Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MXRT1050 Flash support #12317

Merged
merged 4 commits into from
Feb 4, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,10 @@
"S5JS100": {
"base-address": "0x40EF5000",
"size": "0x80000"
},
"MIMXRT1050_EVK": {
"base-address": "0x60400000",
"size": "0x3C00000"
}
}
}
374 changes: 374 additions & 0 deletions targets/TARGET_NXP/TARGET_MCUXpresso_MCUS/TARGET_IMX/flash_api.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,374 @@
/* mbed Microcontroller Library
* Copyright (c) 2019 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "flash_api.h"
#include "mbed_toolchain.h"
#include "mbed_critical.h"

#if DEVICE_FLASH

#include "fsl_flexspi.h"
#include "fsl_cache.h"
#include "flash_defines.h"

AT_QUICKACCESS_SECTION_CODE(void flexspi_update_lut_ram(void));
AT_QUICKACCESS_SECTION_CODE(status_t flexspi_nor_write_enable_ram(uint32_t baseAddr));
AT_QUICKACCESS_SECTION_CODE(status_t flexspi_nor_wait_bus_busy_ram(void));
AT_QUICKACCESS_SECTION_CODE(status_t flexspi_nor_flash_erase_sector_ram(uint32_t address));
AT_QUICKACCESS_SECTION_CODE(static void flexspi_lower_clock_ram(void));
AT_QUICKACCESS_SECTION_CODE(static void flexspi_clock_update_ram(void));
AT_QUICKACCESS_SECTION_CODE(status_t flexspi_nor_flash_page_program_ram(uint32_t address,
const uint32_t *src,
uint32_t size));
AT_QUICKACCESS_SECTION_CODE(void flexspi_nor_flash_read_data_ram(uint32_t addr,
uint32_t *buffer,
uint32_t size));

void flexspi_update_lut_ram(void)
{
flexspi_config_t config;

memset(&config, 0, sizeof(config));

/*Get FLEXSPI default settings and configure the flexspi. */
FLEXSPI_GetDefaultConfig(&config);

/*Set AHB buffer size for reading data through AHB bus. */
config.ahbConfig.enableAHBPrefetch = true;
/*Allow AHB read start address do not follow the alignment requirement. */
config.ahbConfig.enableReadAddressOpt = true;
config.ahbConfig.enableAHBBufferable = true;
config.ahbConfig.enableAHBCachable = true;
/* enable diff clock and DQS */
config.enableSckBDiffOpt = true;
config.rxSampleClock = kFLEXSPI_ReadSampleClkExternalInputFromDqsPad;
config.enableCombination = true;
FLEXSPI_Init(FLEXSPI, &config);

/* Configure flash settings according to serial flash feature. */
FLEXSPI_SetFlashConfig(FLEXSPI, &deviceconfig, kFLEXSPI_PortA1);

/* Update LUT table. */
FLEXSPI_UpdateLUT(FLEXSPI, 0, customLUT, CUSTOM_LUT_LENGTH);

FLEXSPI_SoftwareReset(FLEXSPI);

/* Wait for bus idle. */
while (!FLEXSPI_GetBusIdleStatus(FLEXSPI)) {
}
}

status_t flexspi_nor_write_enable_ram(uint32_t baseAddr)
{
flexspi_transfer_t flashXfer;
status_t status = kStatus_Success;

memset(&flashXfer, 0, sizeof(flashXfer));

/* Write enable */
flashXfer.deviceAddress = baseAddr;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Command;
flashXfer.SeqNumber = 2;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE;

status = FLEXSPI_TransferBlocking(FLEXSPI, &flashXfer);

return status;
}

status_t flexspi_nor_wait_bus_busy_ram(void)
{
/* Wait status ready. */
bool isBusy = false;
uint32_t readValue = 0;
status_t status = kStatus_Success;
flexspi_transfer_t flashXfer;

memset(&flashXfer, 0, sizeof(flashXfer));

flashXfer.deviceAddress = 0;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Read;
flashXfer.SeqNumber = 2;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS;
flashXfer.data = &readValue;
flashXfer.dataSize = 2;

do {
status = FLEXSPI_TransferBlocking(FLEXSPI, &flashXfer);

if (status != kStatus_Success) {
return status;
}

if (readValue & 0x8000) {
isBusy = false;
} else {
isBusy = true;
}

if (readValue & 0x3200) {
status = kStatus_Fail;
break;
}

} while (isBusy);

return status;

}

status_t flexspi_nor_flash_erase_sector_ram(uint32_t address)
{
status_t status = kStatus_Success;
flexspi_transfer_t flashXfer;

memset(&flashXfer, 0, sizeof(flashXfer));

/* Write enable */
status = flexspi_nor_write_enable_ram(address);
if (status != kStatus_Success) {
return status;
}

flashXfer.deviceAddress = address;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Command;
flashXfer.SeqNumber = 4;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR;

status = FLEXSPI_TransferBlocking(FLEXSPI, &flashXfer);
if (status != kStatus_Success) {
return status;
}

status = flexspi_nor_wait_bus_busy_ram();

/* Do software reset. */
FLEXSPI_SoftwareReset(FLEXSPI);

return status;
}

static void flexspi_lower_clock_ram(void)
{
unsigned int reg = 0;

/* Wait for bus idle. */
while (!FLEXSPI_GetBusIdleStatus(FLEXSPI)) {
}

FLEXSPI_Enable(FLEXSPI, false);

/* Disable FlexSPI clock */
CCM->CCGR6 &= ~CCM_CCGR6_CG5_MASK;

/* flexspi clock 66M, DDR mode, internal clock 33M. */
reg = CCM->CSCMR1;
reg &= ~CCM_CSCMR1_FLEXSPI_PODF_MASK;
reg |= CCM_CSCMR1_FLEXSPI_PODF(3);
CCM->CSCMR1 = reg;

/* Enable FlexSPI clock */
CCM->CCGR6 |= CCM_CCGR6_CG5_MASK;

FLEXSPI_Enable(FLEXSPI, true);

/* Do software reset. */
FLEXSPI_SoftwareReset(FLEXSPI);

/* Wait for bus idle. */
while (!FLEXSPI_GetBusIdleStatus(FLEXSPI)) {
}
}

static void flexspi_clock_update_ram(void)
{
/* Program finished, speed the clock to 133M. */
/* Wait for bus idle before change flash configuration. */
while (!FLEXSPI_GetBusIdleStatus(FLEXSPI)) {
}
FLEXSPI_Enable(FLEXSPI, false);
/* Disable FlexSPI clock */
CCM->CCGR6 &= ~CCM_CCGR6_CG5_MASK;

/* flexspi clock 260M, DDR mode, internal clock 130M. */
CCM->CSCMR1 &= ~CCM_CSCMR1_FLEXSPI_PODF_MASK;

/* Enable FlexSPI clock */
CCM->CCGR6 |= CCM_CCGR6_CG5_MASK;

FLEXSPI_Enable(FLEXSPI, true);

/* Do software reset. */
FLEXSPI_SoftwareReset(FLEXSPI);

/* Wait for bus idle. */
while (!FLEXSPI_GetBusIdleStatus(FLEXSPI)) {
}
}

status_t flexspi_nor_flash_page_program_ram(uint32_t address, const uint32_t *src, uint32_t size)
{
status_t status = kStatus_Success;
flexspi_transfer_t flashXfer;
uint32_t offset = 0;

memset(&flashXfer, 0, sizeof(flashXfer));

flexspi_lower_clock_ram();

while (size > 0) {
/* Write enable */
status = flexspi_nor_write_enable_ram(address + offset);

if (status != kStatus_Success) {
return status;
}

/* Prepare page program command */
flashXfer.deviceAddress = address + offset;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Write;
flashXfer.SeqNumber = 2;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM;
flashXfer.data = (uint32_t *)(src + offset);
flashXfer.dataSize = BOARD_FLASH_PAGE_SIZE;

status = FLEXSPI_TransferBlocking(FLEXSPI, &flashXfer);

if (status != kStatus_Success) {
return status;
}

status = flexspi_nor_wait_bus_busy_ram();

if (status != kStatus_Success) {
return status;
}

size -= BOARD_FLASH_PAGE_SIZE;
offset += BOARD_FLASH_PAGE_SIZE;
}

flexspi_clock_update_ram();

return status;
}

void flexspi_nor_flash_read_data_ram(uint32_t addr, uint32_t *buffer, uint32_t size)
{
memcpy(buffer, (void *)addr, size);
}

int32_t flash_init(flash_t *obj)
{
flexspi_update_lut_ram();

return 0;
}

int32_t flash_erase_sector(flash_t *obj, uint32_t address)
{
status_t status = kStatus_Success;
int32_t ret = 0;

core_util_critical_section_enter();

status = flexspi_nor_flash_erase_sector_ram(address - FlexSPI_AMBA_BASE);

if (status != kStatus_Success) {
ret = -1;
} else {
DCACHE_InvalidateByRange(address, BOARD_FLASH_SECTOR_SIZE);
}

core_util_critical_section_exit();

return ret;
}

int32_t flash_program_page(flash_t *obj, uint32_t address, const uint8_t *data, uint32_t size)
{
status_t status = kStatus_Success;
int32_t ret = 0;

core_util_critical_section_enter();

status = flexspi_nor_flash_page_program_ram(address - FlexSPI_AMBA_BASE, (uint32_t *)data, size);

if (status != kStatus_Success) {
ret = -1;
} else {
DCACHE_InvalidateByRange(address, size);
}

core_util_critical_section_exit();

return ret;
}

int32_t flash_read(flash_t *obj, uint32_t address, uint8_t *data, uint32_t size)
{
flexspi_nor_flash_read_data_ram(address, (uint32_t *)data, size);

return 0;
}

int32_t flash_free(flash_t *obj)
{
return 0;
}

uint32_t flash_get_sector_size(const flash_t *obj, uint32_t address)
{
uint32_t sectorsize = MBED_FLASH_INVALID_SIZE;
uint32_t devicesize = BOARD_FLASH_SIZE;
uint32_t startaddr = BOARD_FLASH_START_ADDR;

if ((address >= startaddr) && (address < (startaddr + devicesize))) {
sectorsize = BOARD_FLASH_SECTOR_SIZE;
}

return sectorsize;
}

uint32_t flash_get_page_size(const flash_t *obj)
{
return BOARD_FLASH_PAGE_SIZE;
}

uint32_t flash_get_start_address(const flash_t *obj)
{
return BOARD_FLASH_START_ADDR;
}

uint32_t flash_get_size(const flash_t *obj)
{
return BOARD_FLASH_SIZE;
}

uint8_t flash_get_erase_value(const flash_t *obj)
{
(void)obj;

return 0xFF;
}

#endif //DEVICE_FLASH

Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,12 @@ struct trng_s {
uint8_t dummy;
};

#if DEVICE_FLASH
struct flash_s {
uint8_t dummy;
};
#endif

#include "gpio_object.h"

#ifdef __cplusplus
Expand Down
Loading