DiffusionNet: Accelerating the solution of Time-Dependent partial differential equations using deep learning
Citation
@article{asem2020diffusionnet,
title={DiffusionNet: Accelerating the solution of Time-Dependent partial differential equations using deep learning},
author={Asem, Mahmoud},
journal={arXiv preprint arXiv:2011.10015},
year={2020}
}
pip install -r requirements.txt
Script | Description |
---|---|
solver.py |
Alternate direction implicit scheme solver for transient heat transfer |
DiffusionNet.py |
Content Cell |
generator.py |
data generation utility functions for Transient heat transfer |
visualize.py |
Heat map comparison utility function |
speedup_analysis.py |
speedup analysis section utility functions |
Notebook | Description |
---|---|
Reproduce models.ipynb |
Reproduce trained models |
Heatmaps figure.ipynb |
Reproduce and visualize heat maps comparisons |
Speedup figures.ipynb |
Reproduce speedups plots for Iterations / Gridsize ( GPU+CPU specific ) |
Loss plots figures |
Reproduce loss plots |
To reproduce trained models, under Reproduce models notebook
- Choose the appropriate parameters for
grid size
,step
,number ofbatches
to be trained on. - Tick the train checkbox to start training, reproduced models will be saved under
ReproducedModels
andReproducedLogs
folders.
Under Loss plots figures.ipynb
notebook choose the desired log from drop down menu and check plot
Under visualization notebook, Choose the following parameters,
Parameter | Description |
---|---|
Step |
step size |
Content Cell |
Content Cell |
Grid size |
Grid size NxN |
bc1 |
Bottom boundary condition |
bc2 |
Left boundary condition |
bc3 |
Top boundary condition |
bc4 |
Right boundary condition |
ic |
Initial condition |
t00 |
Initial input step to model |
- Tick analyze to view Timing of numerical solution and deep learning solution, and Error metrics.
- Ticks plot to view the heat maps of Numerical solution , Deep learning solution and the absolute difference between them, respectively.
- Tick save to save the resultant heat maps (optional).
- Make sure the loaded model Step[10,100] and gridsizes[12,24,48,96] matches that of selected heat maps parameters above
Under Speedup Figures notebook, Choose the following parameters,
Parameter | Description |
---|---|
Speedup analysis |
Iteration analysis / Gridsize analysis |
P |
Deep learning prediction step |
Grid size |
Grid size NxN |
Tick Start to start analysis and then plot figures as in below
Script | Description |
---|---|
utils.py |
Utility functions |
DiffusionNet.py |
Content Cell |
generator.py |
data generation utility functions for Transient heat transfer |
Notebook | Description |
---|---|
Reproduce models.ipynb |
Reproduce trained models |
Reproduce Figures.ipynb |
Reproduce Data representation,Error histogram and Sample plot figure |
Reproduce Test data prediction.ipynb |
Generate the prediction of DiffusionNet for the given test data |