Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Align Your Steps to available schedulers #15751

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions modules/sd_schedulers.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,9 @@

import k_diffusion

import numpy as np

from modules import shared

@dataclasses.dataclass
class Scheduler:
Expand All @@ -30,6 +33,33 @@ def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
sigs += [0.0]
return torch.FloatTensor(sigs).to(device)

def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device='cpu'):
# https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])

new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)

interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys

if shared.sd_model.is_sdxl:
sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
else:
# Default to SD 1.5 sigmas.
sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]

if n != len(sigmas):
sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
else:
sigmas.append(0.0)

return torch.FloatTensor(sigmas).to(device)

schedulers = [
Scheduler('automatic', 'Automatic', None),
Expand All @@ -38,6 +68,7 @@ def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
]

schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}