Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Integrate Slack App with Pinecone #12

Merged
merged 12 commits into from
Jun 26, 2023
Merged
2 changes: 2 additions & 0 deletions apps/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
__pycache__
**/.env
2 changes: 1 addition & 1 deletion apps/slackbot/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -21,4 +21,4 @@ COPY . .
EXPOSE 80

# Run the Flask app
CMD ["python", "app.py"]
CMD ["python", "bolt_app.py"]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why do you need to change this?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is the new app that utilize pine cone. I didn’t change the other app.py file.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you resolve thw conflict then

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

7 changes: 6 additions & 1 deletion apps/slackbot/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,12 @@ This repository contains a chatbot implementation using Flask and Slack. The cha
. All these tokens should be added in .env file

SLACK_SIGNING_SECRET: Slack apps signing secret.
SLACK_BOT_TOKEN: Slack bot token for authentication.
SLACK_OAUTH_TOKEN: Slack bot token for authentication.
VERIFICATION_TOKEN: Slack verification token.
OPENAI_API_KEY: OpenAI API key for language modeling.
PINECONE_INDEX: The Pinecone vector database index
PINECONE_API_KEY: The Pinecone vector database API key
PINECONE_ENV: Region where the Pinecone index is deployed

All these tokens should be added in .env file

Expand All @@ -47,6 +50,8 @@ This repository contains a chatbot implementation using Flask and Slack. The cha
2. Expose the server to the internet using a tool like ngrok. Not required in hosted on public IP

3. Set up the Slack app's Event Subscriptions and provide the ngrok URL as the Request URL.
* **NOTE:** When add the url to the Slack app, make sure to append `/slack/events` at the end as this is the default path used by Slack Bolt.


# Reference

Expand Down
14 changes: 4 additions & 10 deletions apps/slackbot/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,8 @@
import atexit
load_dotenv()

from vectorstores import get_local_db


# This `app` represents your existing Flask app
app = Flask(__name__)
Expand Down Expand Up @@ -176,20 +178,12 @@ def createIndex(pdf_folder_path):
global loaders
global chain
global index
loaders = [UnstructuredPDFLoader(os.path.join(pdf_folder_path, fn)) for fn in os.listdir(pdf_folder_path)]
# loaders
documents = []
for loader in loaders:
documents.extend(loader.load())

index = VectorstoreIndexCreator(
embedding=OpenAIEmbeddings(openai_api_key=OPENAI_KEY),
text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)).from_loaders(loaders)
retrival = get_local_db(pdf_folder_path, OPENAI_KEY)

llm = OpenAI(model_name="gpt-3.5-turbo", openai_api_key=OPENAI_KEY)
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=index.vectorstore.as_retriever(),
retrieve=retrival,
input_key="question")

return chain
Expand Down
153 changes: 153 additions & 0 deletions apps/slackbot/bolt_app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
##############################################
# Implementation of the slack app using Bolt
# Importing necessary modules
##############################################

import os
from dotenv import load_dotenv
load_dotenv()
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from os import environ
from vectorstores import ConversationStore
from prompt import SlackBotPrompt
from slack_bolt import App



# This `app` represents your existing Flask app
app = App(
token=os.environ.get("SLACK_OAUTH_TOKEN"),
signing_secret=os.environ.get("SLACK_SIGNING_SECRET"),
)


#####################################################################################################
# Setting up environment variables and Slack configuration:
# The code retrieves various environment variables using os.environ.get() method.
# Environment variables include Slack signing secret, OAuth token, verification token, and OpenAI key.
#####################################################################################################

SLACK_SIGNING_SECRET = environ.get("SLACK_SIGNING_SECRET")
SLACK_OAUTH_TOKEN = environ.get("SLACK_OAUTH_TOKEN")
VERIFICATION_TOKEN = environ.get("VERIFICATION_TOKEN")
OPENAI_KEY=environ.get("OPENAI_KEY")



###########################################################################
# Instantiating Slack client and Flask app:
###########################################################################

#instantiating slack client
os.environ['OPENAI_API_KEY'] = OPENAI_KEY

@app.command("/hello-socket-mode")
def hello_command(ack, body):
user_id = body["user_id"]
ack(f"Hi, <@{user_id}>!")

bot = app.client.auth_test()
print(bot)

@app.event("app_mention")
def event_test(client, say, event):
question = event['text']

thread_ts = event.get("thread_ts", None) or event["ts"]
replies = client.conversations_replies(channel=event['channel'], ts=thread_ts)
previous_messages = replies['messages'][:-1]

results = get_response(question, previous_messages)

say(results, thread_ts=thread_ts)

@app.event("app_home_opened")
def update_home_tab(client, event, logger):
try:
# views.publish is the method that your app uses to push a view to the Home tab
client.views_publish(
# the user that opened your app's app home
user_id=event["user"],
# the view object that appears in the app home
view={
"type": "home",
"callback_id": "home_view",

# body of the view
"blocks": [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*Welcome to your _App's Home_* :tada:"
}
},
{
"type": "divider"
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "This button won't do much for now but you can set up a listener for it using the `actions()` method and passing its unique `action_id`. See an example in the `examples` folder within your Bolt app."
}
},
{
"type": "actions",
"elements": [
{
"type": "button",
"text": {
"type": "plain_text",
"text": "Click me!"
}
}
]
}
]
}
)

except Exception as e:
logger.error(f"Error publishing home tab: {e}")

def get_response(question, previous_messages):
llm = ChatOpenAI(
openai_api_key=OPENAI_KEY, request_timeout=120
)

prompt = SlackBotPrompt(
ai_name='Sherpa',
ai_id=bot['user_id'],
token_counter=llm.get_num_tokens,
input_variables=['query', 'messages', 'retriever']
)

retriever = ConversationStore.get_vector_retrieval(
'ReadTheDocs', OPENAI_KEY, index_name=os.getenv("PINECONE_INDEX")
)

chain = LLMChain(llm=llm, prompt=prompt)

return chain.run(
query=question,
messages=previous_messages,
retriever=retriever,
)

# Start the server on port 3000
if __name__ == "__main__":
# documents = getDocuments('files')
# vectorstore = getVectoreStore(documents)
# qa = createLangchainQA(vectorstore)

# chain = createIndex("files")
print('Running the app')
app.start()
# SocketModeHandler(app, os.environ["SLACK_APP_TOKEN"]).start()
104 changes: 104 additions & 0 deletions apps/slackbot/prompt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
from pydantic import BaseModel
from langchain.prompts.chat import BaseChatPromptTemplate
from typing import Callable, Any, List
from langchain.schema import (
BaseMessage,
HumanMessage,
SystemMessage,
AIMessage
)
import time
from langchain.vectorstores.base import VectorStoreRetriever



class SlackBotPrompt(BaseChatPromptTemplate, BaseModel):
ai_name: str
ai_id: str
token_counter: Callable[[str], int]
send_token_limit: int = 4196

def construct_base_prompt(self):
full_prompt = (
f"You are a friendly assistent bot called {self.ai_name}\n\n"
)

return full_prompt

def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
base_prompt = SystemMessage(
content=self.construct_base_prompt()
)
time_prompt = SystemMessage(
content=f"The current time and date is {time.strftime('%c')}"
)
used_tokens = self.token_counter(base_prompt.content) + self.token_counter(
time_prompt.content
)

query = kwargs["query"]
retriever: VectorStoreRetriever = kwargs["retriever"]
previous_messages = self.process_chat_history(kwargs["messages"])

# retrieve relevant documents for the query
relevant_docs = retriever.get_relevant_documents(query)
relevant_memory = ["Document: " + d.page_content + "\nLink" + d.metadata["source"] + "\n" for d in relevant_docs]

# remove documents from memory until the token limit is reached
relevant_memory_tokens = sum(
[self.token_counter(doc) for doc in relevant_memory]
)
while used_tokens + relevant_memory_tokens > 2500:
relevant_memory = relevant_memory[:-1]
relevant_memory_tokens = sum(
[self.token_counter(doc) for doc in relevant_memory]
)

content_format = (
f"Here are some documents that may be relevant to the topic:"
f"\n{relevant_memory}\n\n"
)

input_message = (
f"Use the above information to respond to the user's message:\n{query}\n\n"
f"create inline citation by adding the source link of the reference document at the of the sentence."
f"Only use the link given in the reference document. DO NOT create link by yourself."
)

# print(content_format)

memory_message = SystemMessage(content=content_format)
used_tokens += self.token_counter(memory_message.content)
historical_messages: List[BaseMessage] = []
print(previous_messages)
for message in previous_messages[-10:][::-1]:
message_tokens = self.token_counter(message.content)
if used_tokens + message_tokens > self.send_token_limit - 1000:
break
historical_messages = [message] + historical_messages
used_tokens += message_tokens
print(historical_messages)

input_message = HumanMessage(content=input_message)

messages: List[BaseMessage] = [base_prompt, time_prompt, memory_message]
messages += historical_messages
messages.append(input_message)

return messages

def process_chat_history(self, messages: List[dict]) -> List[BaseMessage]:
results = []

for message in messages:
print(message)
if message['type'] != 'message' and message['type'] != 'text':
continue

message_cls = AIMessage if message['user'] == self.ai_id else HumanMessage
# replace the at in the message with the name of the bot
text = message['text'].replace(f'@{self.ai_id}', f'@{self.ai_name}')
results.append(message_cls(content=text))

return results

4 changes: 3 additions & 1 deletion apps/slackbot/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,4 +9,6 @@ unstructured
openai
chromadb
tiktoken
Flask-Cors==3.0.10
slack_bolt
pinecone-client
Flask-Cors==3.0.10
Loading