Skip to content

Action Chunking Transformers with In-the-Wild Learning Framework

License

Notifications You must be signed in to change notification settings

AirExo/act-in-the-wild

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ACT with in-the-Wild Learning

[Paper] [Project Page] [Data Collector] [Sample Demonstration Data]

This repository contains code for training the policy with in-the-wild demonstrations and teleoperated demonstrations. These demonstrations are collected by AirExo, see data collector for details. This repository is modified upon the original ACT repository to adapt our demonstration data and increase validation sample density per epoch, as pointed out in here.

Requirements

Python Dependencies:

  • numpy
  • torch
  • torchvision
  • opencv-python
  • pillow
  • easydict
  • argparse
  • tqdm
  • transforms3d
  • ipython

For real-world evaluations, you will need the same hardware as described in data collector and easyrobot library.

Run

Dataset Configurations

Please configurate the dataset information in constants.py and the lambda expressions of scene_filter and train_val_filter in utils.py for data selection (e.g., if you only want to use 10 samples for training, etc.).

Training from Scratch

To train ACT from scratch:

python train.py \
        --ckpt_dir [ckpt_dir] \
        --policy_class ACT \
        --task_name [task name] \
        --batch_size [batch size] \
        --seed [seed] \
        --num_epochs [num epoch] \
        --save_epoch [save epoch] \
        --lr [learning rate] \
        --freq [data frequency] \
        --kl_weight [kl weight] \
        --chunk_size [chunk size] \
        --hidden_dim [hidden dim] \
        --dim_feedforward [dim feedforward]

In-the-Wild Learning Framework

For in-the-wild learning stage 1: pre-training with in-the-wild demonstrations:

python train.py \
        --ckpt_dir [ckpt_dir] \
        --policy_class ACT \
        --task_name [task name] \
        --batch_size [batch size] \
        --seed [seed] \
        --num_epochs [num epoch] \
        --save_epoch [save epoch] \
        --lr [learning rate] \
        --freq [data frequency] \
        --in_the_wild
        --kl_weight [kl weight] \
        --chunk_size [chunk size] \
        --hidden_dim [hidden dim] \
        --dim_feedforward [dim feedforward]

For in-the-wild learning stage 2: fine-tuning with teleoperated demonstrations:

python train.py \
        --ckpt_dir [ckpt_dir] \
        --policy_class ACT \
        --task_name [task name] \
        --batch_size [batch size] \
        --seed [seed] \
        --num_epochs [num epoch] \
        --save_epoch [save epoch] \
        --lr [learning rate] \
        --freq [data frequency] \
        --resume_ckpt [pre-trained checkpoint] \
        --kl_weight [kl weight] \
        --chunk_size [chunk size] \
        --hidden_dim [hidden dim] \
        --dim_feedforward [dim feedforward]

Real-World Evaluation

To evaluate the policy in real world:

python eval.py \
        --ckpt [checkpoint] \
        --robot_cfgs [evaluation configurations] \
        --control_freq [control frequency] \
        --policy_class ACT \
        --task_name [task name] \
        --seed [seed] \
        --kl_weight [kl weight] \
        --chunk_size [chunk size] \
        --hidden_dim [hidden dim] \
        --dim_feedforward [dim feedforward] \
        --temporal_agg

For evaluation configurations, see configs folder for details.

Reference

Original ACT repository: https://github.com/tonyzhaozh/act.

Citation

If you find AirExo useful in your research, please consider citing the following paper:

@article{
    fang2023low,
    title = {Low-Cost Exoskeletons for Learning Whole-Arm Manipulation in the Wild},
    author = {Fang, Hongjie and Fang, Hao-Shu and Wang, Yiming and Ren, Jieji and Chen, Jingjing and Zhang, Ruo and Wang, Weiming and Lu, Cewu},
    journal = {arXiv preprint arXiv:2309.14975},
    year = {2023}
}

About

Action Chunking Transformers with In-the-Wild Learning Framework

Resources

License

Stars

Watchers

Forks

Languages