Skip to content

Commit

Permalink
Add some abilities for wrapped phase regressions
Browse files Browse the repository at this point in the history
  • Loading branch information
Alexey Pechnikov committed Dec 17, 2024
1 parent 4e12771 commit 757b84d
Showing 1 changed file with 21 additions and 10 deletions.
31 changes: 21 additions & 10 deletions pygmtsar/pygmtsar/Stack_detrend.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,7 +183,7 @@ def regression(data, variables, weight=None, wrap=False, valid_pixels_threshold=
#print ('chunk2d', chunk2d)

def regression_block(data, weight, *args, **kwargs):
data_values = data.ravel().astype(np.float64)
data_values = data.ravel()
# manage variable number of variables
variables_stack = np.stack([arg[0] if arg.ndim==3 else arg for arg in args])
#variables_values = variables_stack.reshape(-1, variables_stack.shape[0]).T
Expand All @@ -202,20 +202,20 @@ def regression_block(data, weight, *args, **kwargs):
weight_values = None
nanmask_weight = None
nanmask = nanmask_data | nanmask_values
del nanmask_data, nanmask_weight

# regression requires enough amount of valid pixels
if data_values.size - np.sum(nanmask) < valid_pixels_threshold:
del data_values, variables_values, weight_values
del nanmask_data, nanmask_values, nanmask_weight, nanmask
del data_values, variables_values, weight_values, nanmask
return np.nan * np.zeros(data.shape)

# Prepare target Y for regression
if wrap:
# Convert angles to sine and cosine as (N,2) -> (sin, cos) matrix
Y = np.column_stack([np.sin(data_values), np.cos(data_values)])
Y = np.column_stack([np.sin(data_values), np.cos(data_values)]).astype(np.float64)
else:
# Just use data values as (N,1) matrix
Y = data_values.reshape(-1, 1)
Y = data_values.reshape(-1, 1).astype(np.float64)
del data_values

# build prediction model with or without plane removal (fit_intercept)
Expand All @@ -228,13 +228,14 @@ def regression_block(data, weight, *args, **kwargs):
fit_params = {'linearregression__sample_weight': weight_values[~nanmask]} if weight.size > 1 else {}
else:
raise ValueError(f"Unsupported algorithm {kwargs['algorithm']}. Should be 'linear' or 'sgd'")
del weight_values

regr.fit(variables_values[:, ~nanmask].T, Y[~nanmask], **fit_params)
del weight_values, Y
del Y, nanmask

# Predict for all valid pixels
model_pred = regr.predict(variables_values[:, ~nanmask_values].T)
del regr
del regr, variables_values

model = np.full_like(data, np.nan).ravel()
if wrap:
Expand All @@ -243,8 +244,8 @@ def regression_block(data, weight, *args, **kwargs):
else:
# (N,1), just flatten
model[~nanmask_values] = model_pred.ravel()
del variables_values, model_pred
del nanmask_data, nanmask_values, nanmask_weight, nanmask
del model_pred, nanmask_values

return model.reshape(data.shape).astype(np.float32)

dshape = data[0].shape if data.ndim==3 else data.shape
Expand Down Expand Up @@ -1066,11 +1067,18 @@ def trend(self, data, dim='auto', degree=1):
print ('NOTE: Function is deprecated. Use Stack.regression1d() instead.')
return self.regression1d(data=data, dim=dim, degree=degree)

def regression1d(self, data, dim='auto', degree=1):
def regression1d(self, data, dim='auto', degree=1, wrap=False):
import xarray as xr
import pandas as pd
import numpy as np

if wrap:
trend_sin = sbas.regression1d(np.sin(intf_ps), baseline_pairs.baseline)
trend_cos = sbas.regression1d(np.cos(intf_ps), baseline_pairs.baseline)
out = np.arctan2(trend_sin, trend_cos)
del trend_sin, trend_cos
return out

multi_index = None
if 'stack' in data.dims and isinstance(data.coords['stack'].to_index(), pd.MultiIndex):
multi_index = data['stack']
Expand All @@ -1095,6 +1103,8 @@ def regression1d(self, data, dim='auto', degree=1):
else:
dim_da = xr.DataArray(dim, dims=[stackdim])
data_dim = data.assign_coords(polyfit_coord=dim_da).swap_dims({'pair': 'polyfit_coord'})

# fit the specified values
# Polynomial coefficients, highest power first, see numpy.polyfit
fit_coeff = data_dim.polyfit('polyfit_coord', degree).polyfit_coefficients.astype(np.float32)
fit = xr.polyval(data_dim['polyfit_coord'], fit_coeff)\
Expand All @@ -1105,6 +1115,7 @@ def regression1d(self, data, dim='auto', degree=1):
return out

# fit existing coordinate values
# Polynomial coefficients, highest power first, see numpy.polyfit
fit_coeff = data.polyfit(dim, degree).polyfit_coefficients.astype(np.float32)
fit = xr.polyval(data[dim], fit_coeff).astype(np.float32).rename('trend')
out = xr.merge([fit, fit_coeff]).rename(polyfit_coefficients='coefficients')
Expand Down

0 comments on commit 757b84d

Please sign in to comment.