Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).
The pytorch implementation of low light enhancement with STAR on Adobe-MIT FiveK dataset. You can find it in STAR-DCE directory. Here we adopt the pipleline of Zero-DCE ( paper | code ), just replacing the CNN backbone with STAR. In Zero-DCE, for each image the network will regress a group of curves, which will then be applied on the source image iteratively. You can find more details in the original repo Zero-DCE.
- numpy
- einops
- torch
- torchvision
- opencv
We provide download links for Adobe-MIT FiveK datasets we used ( train | test ). Please note that we adopt the test set splited by DeepUPE for fair comparison.
To train a original STAR-DCE model,
cd STAR-DCE
python train_dce.py
--lowlight_images_path "dir-to-your-training-set" \
--parallel True \
--snapshots_folder snapshots/STAR-ori \
--lr 0.001 \
--num_epochs 100 \
--lr_type cos \
--train_batch_size 32 \
--model STAR-DCE-Ori \
--snapshot_iter 10 \
--num_workers 32 \
To train the baseline CNN-based DCE-Net (w\ or w\o Pooling),
cd STAR-DCE
python train_dce.py
--lowlight_images_path "dir-to-your-training-set" \
--parallel True \
--snapshots_folder snapshots/DCE \
--lr 0.001 \
--num_epochs 100 \
--lr_type cos \
--train_batch_size 32 \
--model DCE-Net \
--snapshot_iter 10 \
--num_workers 32 \
or
cd STAR-DCE
python train_dce.py
--lowlight_images_path "dir-to-your-training-set" \
--parallel True \
--snapshots_folder snapshots/DCE-Pool \
--lr 0.001 \
--num_epochs 100 \
--lr_type cos \
--train_batch_size 32 \
--model DCE-Net-Pool \
--snapshot_iter 10 \
--num_workers 32 \
To evaluated the STAR-DCE model you trained,
cd STAR-DCE
python test_dce.py \
--lowlight_images_path "dir-to-your-test-set" \
--parallel True \
--snapshots_folder snapshots_test/STAR-DCE \
--val_batch_size 1 \
--pretrain_dir snapshots/STAR-ori/Epoch_best.pth \
--model STAR-DCE-Ori \
To evaluated the DCE-Net model you trained,
cd STAR-DCE
python test_dce.py \
--lowlight_images_path "dir-to-your-test-set" \
--parallel True \
--snapshots_folder snapshots_test/DCE \
--val_batch_size 1 \
--pretrain_dir snapshots/DCE/Epoch_best.pth \
--model DCE-Net \
If this code helps your research, please cite our paper :)
@inproceedings{zhang2021star,
title={STAR: A Structure-Aware Lightweight Transformer for Real-Time Image Enhancement},
author={Zhang, Zhaoyang and Jiang, Yitong and Jiang, Jun and Wang, Xiaogang and Luo, Ping and Gu, Jinwei},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={4106--4115},
year={2021}
}