Skip to content

Can LMs Generalize to Future Data? An Empirical Analysis on Text Summarization

Notifications You must be signed in to change notification settings

AndyCheang/TempoSum

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 

Repository files navigation

Can LMs Generalize to Future Data? An Empirical Analysis on Text Summarization

This repository contains data for the paper Can LMs Generalize to Future Data? An Empirical Analysis on Text Summarization

@article{cheang2023temposum,
  title={TempoSum: Evaluating the Temporal Generalization of Abstractive Summarization},
  author={Cheang, Chi Seng and Chan, Hou Pong and Wong, Derek F and Liu, Xuebo and Li, Zhaocong and Sun, Yanming and Liu, Shudong and Chao, Lidia S},
  journal={arXiv preprint arXiv:2305.01951},
  year={2023}
}

Getting the data

Download the datasets from Huggingface Datasets Library

Run the following commands to to load the datasets from Huggingface Datasets Library.

import datasets

# BBC in-distribution test set
dataset = datasets.load_dataset('chiseng-cheang/TempoSum', 'BBC_in-distribution')

# BBC future test set
dataset = datasets.load_dataset('chiseng-cheang/TempoSum', 'BBC_future')

# CNN in-distribution test set
dataset = datasets.load_dataset('chiseng-cheang/TempoSum', 'CNN_in-distribution')

# CNN future test set
dataset = datasets.load_dataset('chiseng-cheang/TempoSum', 'CNN_future')

Manual Download

All datasets are also available at: https://drive.google.com/drive/folders/1BdeTFqoea8GD240h78PgXBO68e53ea9E?usp=sharing