Skip to content

AnhQuoc533/Basic-Data-Preprocessing

Repository files navigation

Basic Data Pre-processing

  • Manually pre-process data without external modules (NumPy, Pandas, ...).
  • Support command line only.
FUNCTIONALITY FILE
1. List attributes with missing values. list_missing.py
2. Count the number of samples with missing values. count_missing.py
3. Impute data using mean or median (for numeric attributes) or mode (for nominal attributes). impute.py
4. Remove attributes with amount of missing values exceeds the threshold. remove_attributes.py
5. Remove samples with amount of missing values exceeds the threshold. remove_samples.py
6. Remove duplicate samples. remove_clone.py
7. Normalize a numeric attribute using min-max scaling or standardization normalize.py
8. Calculate the input math expression of numeric attributes. evaluate_attributes.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages