forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
877f552
commit 16daae1
Showing
1 changed file
with
208 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
#导入一些必要的包 | ||
import os | ||
import random | ||
import paddle | ||
import paddle.nn as nn | ||
import paddle.optimizer as optim | ||
import paddle.vision.datasets as dset | ||
import paddle.vision.transforms as transforms | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import matplotlib.animation as animation | ||
|
||
dataset = paddle.vision.datasets.MNIST(mode='train', | ||
transform=transforms.Compose([ | ||
# resize ->(32,32) | ||
transforms.Resize((32,32)), | ||
# 归一化到-1~1 | ||
transforms.Normalize([127.5], [127.5]) | ||
])) | ||
|
||
dataloader = paddle.io.DataLoader(dataset, batch_size=32, | ||
shuffle=True, num_workers=4) | ||
|
||
#参数初始化的模块 | ||
@paddle.no_grad() | ||
def normal_(x, mean=0., std=1.): | ||
temp_value = paddle.normal(mean, std, shape=x.shape) | ||
x.set_value(temp_value) | ||
return x | ||
|
||
@paddle.no_grad() | ||
def uniform_(x, a=-1., b=1.): | ||
temp_value = paddle.uniform(min=a, max=b, shape=x.shape) | ||
x.set_value(temp_value) | ||
return x | ||
|
||
@paddle.no_grad() | ||
def constant_(x, value): | ||
temp_value = paddle.full(x.shape, value, x.dtype) | ||
x.set_value(temp_value) | ||
return x | ||
|
||
def weights_init(m): | ||
classname = m.__class__.__name__ | ||
if hasattr(m, 'weight') and classname.find('Conv') != -1: | ||
normal_(m.weight, 0.0, 0.02) | ||
elif classname.find('BatchNorm') != -1: | ||
normal_(m.weight, 1.0, 0.02) | ||
constant_(m.bias, 0) | ||
|
||
# Generator Code | ||
class Generator(nn.Layer): | ||
def __init__(self, ): | ||
super(Generator, self).__init__() | ||
self.gen = nn.Sequential( | ||
# input is Z, [B, 100, 1, 1] -> [B, 64 * 4, 4, 4] | ||
nn.Conv2DTranspose(100, 64 * 4, 4, 1, 0, bias_attr=False), | ||
nn.BatchNorm2D(64 * 4), | ||
nn.ReLU(True), | ||
# state size. [B, 64 * 4, 4, 4] -> [B, 64 * 2, 8, 8] | ||
nn.Conv2DTranspose(64 * 4, 64 * 2, 4, 2, 1, bias_attr=False), | ||
nn.BatchNorm2D(64 * 2), | ||
nn.ReLU(True), | ||
# state size. [B, 64 * 2, 8, 8] -> [B, 64, 16, 16] | ||
nn.Conv2DTranspose( 64 * 2, 64, 4, 2, 1, bias_attr=False), | ||
nn.BatchNorm2D(64), | ||
nn.ReLU(True), | ||
# state size. [B, 64, 16, 16] -> [B, 1, 32, 32] | ||
nn.Conv2DTranspose( 64, 1, 4, 2, 1, bias_attr=False), | ||
nn.Tanh() | ||
) | ||
|
||
def forward(self, x): | ||
return self.gen(x) | ||
|
||
|
||
netG = Generator() | ||
# Apply the weights_init function to randomly initialize all weights | ||
# to mean=0, stdev=0.2. | ||
netG.apply(weights_init) | ||
|
||
# Print the model | ||
print(netG) | ||
|
||
class Discriminator(nn.Layer): | ||
def __init__(self,): | ||
super(Discriminator, self).__init__() | ||
self.dis = nn.Sequential( | ||
|
||
# input [B, 1, 32, 32] -> [B, 64, 16, 16] | ||
nn.Conv2D(1, 64, 4, 2, 1, bias_attr=False), | ||
nn.LeakyReLU(0.2), | ||
|
||
# state size. [B, 64, 16, 16] -> [B, 128, 8, 8] | ||
nn.Conv2D(64, 64 * 2, 4, 2, 1, bias_attr=False), | ||
nn.BatchNorm2D(64 * 2), | ||
nn.LeakyReLU(0.2), | ||
|
||
# state size. [B, 128, 8, 8] -> [B, 256, 4, 4] | ||
nn.Conv2D(64 * 2, 64 * 4, 4, 2, 1, bias_attr=False), | ||
nn.BatchNorm2D(64 * 4), | ||
nn.LeakyReLU(0.2), | ||
|
||
# state size. [B, 256, 4, 4] -> [B, 1, 1, 1] | ||
nn.Conv2D(64 * 4, 1, 4, 1, 0, bias_attr=False), | ||
# 这里为需要改变的地方 | ||
# nn.Sigmoid() | ||
nn.LeakyReLU() | ||
) | ||
|
||
def forward(self, x): | ||
return self.dis(x) | ||
|
||
netD = Discriminator() | ||
netD.apply(weights_init) | ||
print(netD) | ||
|
||
# Initialize BCELoss function | ||
# 这里为需要改变的地方 | ||
# loss = nn.BCELoss() | ||
loss = nn.MSELoss() | ||
|
||
# Create batch of latent vectors that we will use to visualize | ||
# the progression of the generator | ||
fixed_noise = paddle.randn([32, 100, 1, 1], dtype='float32') | ||
|
||
# Establish convention for real and fake labels during training | ||
real_label = 1. | ||
fake_label = 0. | ||
|
||
# Setup Adam optimizers for both G and D | ||
optimizerD = optim.Adam(parameters=netD.parameters(), learning_rate=0.0002, beta1=0.5, beta2=0.999) | ||
optimizerG = optim.Adam(parameters=netG.parameters(), learning_rate=0.0002, beta1=0.5, beta2=0.999) | ||
|
||
losses = [[], []] | ||
#plt.ion() | ||
now = 0 | ||
for pass_id in range(100): | ||
for batch_id, (data, target) in enumerate(dataloader): | ||
############################ | ||
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) | ||
########################### | ||
|
||
optimizerD.clear_grad() | ||
real_img = data | ||
bs_size = real_img.shape[0] | ||
label = paddle.full((bs_size, 1, 1, 1), real_label, dtype='float32') | ||
real_out = netD(real_img) | ||
errD_real = loss(real_out, label) | ||
errD_real.backward() | ||
|
||
noise = paddle.randn([bs_size, 100, 1, 1], 'float32') | ||
fake_img = netG(noise) | ||
label = paddle.full((bs_size, 1, 1, 1), fake_label, dtype='float32') | ||
fake_out = netD(fake_img.detach()) | ||
errD_fake = loss(fake_out,label) | ||
errD_fake.backward() | ||
optimizerD.step() | ||
optimizerD.clear_grad() | ||
|
||
errD = errD_real + errD_fake | ||
losses[0].append(errD.numpy()[0]) | ||
|
||
############################ | ||
# (2) Update G network: maximize log(D(G(z))) | ||
########################### | ||
optimizerG.clear_grad() | ||
noise = paddle.randn([bs_size, 100, 1, 1],'float32') | ||
fake = netG(noise) | ||
label = paddle.full((bs_size, 1, 1, 1), real_label, dtype=np.float32,) | ||
output = netD(fake) | ||
errG = loss(output,label) | ||
errG.backward() | ||
optimizerG.step() | ||
optimizerG.clear_grad() | ||
|
||
losses[1].append(errG.numpy()[0]) | ||
|
||
|
||
############################ | ||
# visualize | ||
########################### | ||
if batch_id % 100 == 0: | ||
generated_image = netG(noise).numpy() | ||
imgs = [] | ||
plt.figure(figsize=(15,15)) | ||
try: | ||
for i in range(10): | ||
image = generated_image[i].transpose() | ||
image = np.where(image > 0, image, 0) | ||
image = image.transpose((1,0,2)) | ||
plt.subplot(10, 10, i + 1) | ||
|
||
plt.imshow(image[...,0], vmin=-1, vmax=1) | ||
plt.axis('off') | ||
plt.xticks([]) | ||
plt.yticks([]) | ||
plt.subplots_adjust(wspace=0.1, hspace=0.1) | ||
msg = 'Epoch ID={0} Batch ID={1} \n\n D-Loss={2} G-Loss={3}'.format(pass_id, batch_id, errD.numpy()[0], errG.numpy()[0]) | ||
print(msg) | ||
plt.suptitle(msg,fontsize=20) | ||
plt.draw() | ||
plt.savefig('{}/{:04d}_{:04d}.png'.format('work', pass_id, batch_id), bbox_inches='tight') | ||
plt.pause(0.01) | ||
except IOError: | ||
print(IOError) | ||
paddle.save(netG.state_dict(), "work/generator.params") | ||
|