forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
2 changed files
with
234 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
import numpy as np | ||
|
||
import paddle | ||
from paddle.vision.ops import roi_pool, RoIPool | ||
|
||
|
||
class TestRoIPool(unittest.TestCase): | ||
def setUp(self): | ||
self.data = np.random.rand(1, 256, 32, 32).astype('float32') | ||
boxes = np.random.rand(3, 4) | ||
boxes[:, 2] += boxes[:, 0] + 3 | ||
boxes[:, 3] += boxes[:, 1] + 4 | ||
self.boxes = boxes.astype('float32') | ||
self.boxes_num = np.array([3], dtype=np.int32) | ||
|
||
def roi_pool_functional(self, output_size): | ||
|
||
if isinstance(output_size, int): | ||
output_shape = (3, 256, output_size, output_size) | ||
else: | ||
output_shape = (3, 256, output_size[0], output_size[1]) | ||
|
||
if paddle.in_dynamic_mode(): | ||
data = paddle.to_tensor(self.data) | ||
boxes = paddle.to_tensor(self.boxes) | ||
boxes_num = paddle.to_tensor(self.boxes_num) | ||
|
||
pool_out = roi_pool( | ||
data, boxes, boxes_num=boxes_num, output_size=output_size) | ||
np.testing.assert_equal(pool_out.shape, output_shape) | ||
|
||
else: | ||
data = paddle.static.data( | ||
shape=self.data.shape, dtype=self.data.dtype, name='data') | ||
boxes = paddle.static.data( | ||
shape=self.boxes.shape, dtype=self.boxes.dtype, name='boxes') | ||
boxes_num = paddle.static.data( | ||
shape=self.boxes_num.shape, | ||
dtype=self.boxes_num.dtype, | ||
name='boxes_num') | ||
|
||
pool_out = roi_pool( | ||
data, boxes, boxes_num=boxes_num, output_size=output_size) | ||
|
||
place = paddle.CPUPlace() | ||
exe = paddle.static.Executor(place) | ||
|
||
pool_out = exe.run(paddle.static.default_main_program(), | ||
feed={ | ||
'data': self.data, | ||
'boxes': self.boxes, | ||
'boxes_num': self.boxes_num | ||
}, | ||
fetch_list=[pool_out]) | ||
|
||
np.testing.assert_equal(pool_out[0].shape, output_shape) | ||
|
||
def test_roi_pool_functional_dynamic(self): | ||
self.roi_pool_functional(3) | ||
self.roi_pool_functional(output_size=(3, 4)) | ||
|
||
def test_roi_pool_functional_static(self): | ||
paddle.enable_static() | ||
self.roi_pool_functional(3) | ||
paddle.disable_static() | ||
|
||
def test_RoIPool(self): | ||
roi_pool_c = RoIPool(output_size=(4, 3)) | ||
data = paddle.to_tensor(self.data) | ||
boxes = paddle.to_tensor(self.boxes) | ||
boxes_num = paddle.to_tensor(self.boxes_num) | ||
|
||
pool_out = roi_pool_c(data, boxes, boxes_num) | ||
np.testing.assert_equal(pool_out.shape, (3, 256, 4, 3)) | ||
|
||
def test_value(self, ): | ||
data = np.array([i for i in range(1, 17)]).reshape(1, 1, 4, | ||
4).astype(np.float32) | ||
boxes = np.array( | ||
[[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(np.float32) | ||
boxes_num = np.array([2]).astype(np.int32) | ||
output = np.array([[[[11.]]], [[[16.]]]], dtype=np.float32) | ||
|
||
data = paddle.to_tensor(data) | ||
boxes = paddle.to_tensor(boxes) | ||
boxes_num = paddle.to_tensor(boxes_num) | ||
|
||
roi_pool_c = RoIPool(output_size=1) | ||
pool_out = roi_pool_c(data, boxes, boxes_num) | ||
np.testing.assert_almost_equal(pool_out.numpy(), output) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters