Skip to content

Commit

Permalink
[Paddle Inference]Add shuffle channel TRT converter unittest. (Paddle…
Browse files Browse the repository at this point in the history
…Paddle#35228)

* add_shuffle_channel

* add_shuffle_channel

* add_shuffle_teller

* add_shuffle_teller

* add_shuffle_channel

* add_shuffle_channel
  • Loading branch information
xiaoxiaohehe001 authored and AnnaTrainingG committed Sep 29, 2021
1 parent e8958a7 commit 782a6cc
Showing 1 changed file with 112 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertShuffleChannelTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch):
return np.ones([batch, 6, 24, 24]).astype(np.float32)

for batch in [1, 2, 4]:
for group in [1, 2, 3]:
dics = [{"group": group}, {}]
ops_config = [{
"op_type": "shuffle_channel",
"op_inputs": {
"X": ["shuffle_channel_input"]
},
"op_outputs": {
"Out": ["shuffle_channel_out"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"shuffle_channel_input": TensorConfig(data_gen=partial(
generate_input1, dics, batch))
},
outputs=["shuffle_channel_out"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"shuffle_channel_input": [1, 6, 24, 24]
}
self.dynamic_shape.max_input_shape = {
"shuffle_channel_input": [4, 6, 48, 48]
}
self.dynamic_shape.opt_input_shape = {
"shuffle_channel_input": [1, 6, 24, 48]
}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if dynamic_shape == True:
return 0, 3
else:
return 1, 2

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
self.trt_param.max_batch_size = 9
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5

def add_skip_trt_case(self):
pass

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()

0 comments on commit 782a6cc

Please sign in to comment.