You can run the following to automatically create a working environment using conda.
conda create -n ocrl python=3.11
conda activate ocrl
conda install jupyter notebook
pip install -r requirements.txt
Creat another conda environment to build RRT Sharp component.
conda create -n rrt_sharp python=3.9.7
conda activate rrt_sharp
pip install -r requirements2.txt
cd rrt_sharp/src/rrt_sharp
mkdir build
cd build
cmake ..
make -j 12
Once the package is built, can switch to ocrl conda environment.
python3 src/rrt_sharp/src/py/test.py
The easiest way to run the project is to open main.ipynb
using jupyter in the conda environment.
jupyter notebook
- debug python lib for RRT
- debug torch MPPI
- start writing final report
- start writing for the presentation
- be able to run rrt on all envs
Kinematic Bicycle Model: https://github.com/winstxnhdw/KinematicBicycleModel
PyTorch MPPI: https://github.com/UM-ARM-Lab/pytorch_mppi