Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 18 additions & 4 deletions src/GPUGraphsMatrix.jl
Original file line number Diff line number Diff line change
Expand Up @@ -205,6 +205,7 @@ mutable struct SparseGPUMatrixSELL{
} <: AbstractSparseGPUMatrix{Tv,Ti}
m::Int
n::Int
perm::Vector{Int} # Row permutation to reduce padding (not implemented yet)
slice_size::Int
nslices::Int # Number of slices
nnz::Int # Number of nonzeros
Expand All @@ -219,6 +220,7 @@ mutable struct SparseGPUMatrixSELL{
function SparseGPUMatrixSELL(
m::Int,
n::Int,
perm::Vector{Int},
slice_size::Int,
nslices::Int,
nnz::Int,
Expand Down Expand Up @@ -269,6 +271,7 @@ mutable struct SparseGPUMatrixSELL{
new{Tv,Ti,typeof(nzval_gpu),typeof(slice_ptr_gpu)}(
m,
n,
perm,
slice_size,
nslices,
nnz,
Expand Down Expand Up @@ -304,6 +307,11 @@ function SparseGPUMatrixSELL(
max_nnz_per_slice = zeros(Int, n_slices)
nnz_per_row = diff(rowptr)

# Compute optimal permutation of rows to minimize padding (not implemented yet)
#perm = reverse!(sortperm(nnz_per_row[:]))
perm = collect(1:size(m_t, 2))
nnz_per_row = nnz_per_row[perm]

# Compute the maximum number of nonzeros per row for each slice
n_stored = 0
for i = 1:n_slices
Expand Down Expand Up @@ -333,11 +341,15 @@ function SparseGPUMatrixSELL(
if row > size(m_t, 2)
break
end
start = rowptr[row]
end_ = rowptr[row+1] - 1

start = rowptr[perm[row]]
end_ = rowptr[perm[row]+1] - 1
temp_colval[row-slice_start+1, 1:(end_-start+1)] = colval[start:end_]
temp_nzval[row-slice_start+1, 1:(end_-start+1)] = nzval[start:end_]


end

# Reshape the sub-matrix to make it column-major vector and copy it to final storage

colval_padded[slice_ptr[slice]:(slice_ptr[slice+1]-1)] =
Expand All @@ -346,11 +358,13 @@ function SparseGPUMatrixSELL(
collect(Iterators.flatten(temp_nzval))



end

SparseGPUMatrixSELL(
size(m_t, 2),
size(m_t, 1),
perm,
slice_size,
n_slices,
nnz(m_t),
Expand All @@ -372,7 +386,7 @@ function SparseGPUMatrixSELL(
end


# Base methods for the SparseGPUMatrixCSR type
# Base methods for the SparseGPUMatrixSELL type
Base.size(A::SparseGPUMatrixSELL) = (A.m, A.n)
Base.size(A::SparseGPUMatrixSELL, i::Int) = (i == 1) ? A.m : A.n
Base.length(A::SparseGPUMatrixSELL) = A.m * A.n
Expand All @@ -385,7 +399,7 @@ Base.display(A::SparseGPUMatrixSELL) = show(stdout, A)


function Base.getindex(A::SparseGPUMatrixSELL, i::Int, j::Int)
#@warn "Scalar indexing on a SparseGPUMatrixCSR is slow. For better performance, vectorize the operation."
#@warn "Scalar indexing on a SparseGPUMatrixSELL is slow. For better performance, vectorize the operation."
if i < 1 || i > A.m || j < 1 || j > A.n
throw(BoundsError(A, (i, j)))
end
Expand Down
10 changes: 7 additions & 3 deletions src/algorithms/shortest_path.jl
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ function shortest_path!(
while true

iter += one(Ti)

gpu_spmv!(
next,
A_T,
Expand All @@ -67,10 +68,13 @@ function shortest_path!(
#mask = updated, Not used yet
)
# Diff : where we made progress
@. diff = next < dist
if reduce(|, diff) == zero(Td)
return nothing
if iter%8 == 0
@. diff = next < dist
if reduce(|, diff) == zero(Td)
return nothing
end
end

# Update the dist array
dist .= next

Expand Down
11 changes: 7 additions & 4 deletions src/spmv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -340,15 +340,18 @@ end
add,
accum,
)
#slice, offset = @index(Global, NTuple)
#offset = offset - 1
#row = (slice-1) * slice_size + offset + 1
row = @index(Global, Linear)
if mask[row] != mask_zero
slice = (row-1) ÷ slice_size + 1
offset = (row-1) % slice_size
slice = (row-1) ÷ slice_size + 1
offset = (row-1) % slice_size
if row <= n && mask[row] != mask_zero

acc = monoid_neutral_element
for i = (a_slice_ptr[slice]+offset):slice_size:(a_slice_ptr[slice+1]-1)
col = a_col_val[i]
if col == -1
if col == -1
break
end
acc = add(acc, mul(a_nz_val[i], b[col], row, col, col, 1), row, col, col, 1)
Expand Down
8 changes: 4 additions & 4 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -41,9 +41,9 @@ const PAD_VAL = -1



#include("structs.jl")
#include("spmv.jl")
#include("spmm.jl")
#include("bfs.jl")
include("structs.jl")
include("spmv.jl")
include("spmm.jl")
include("bfs.jl")
include("shortest_path.jl")
end
60 changes: 36 additions & 24 deletions test/scratch.jl
Original file line number Diff line number Diff line change
Expand Up @@ -109,41 +109,46 @@ using HarwellRutherfordBoeing

MAIN_TYPE = Bool
#MAIN_TYPE = Float32
RES_TYPE = ifelse(MAIN_TYPE == Bool, Int32, MAIN_TYPE)
BACKEND = CUDA.CUDABackend()

ssmc = ssmc_db();
orkut_path = fetch_ssmc(ssmc_matrices(ssmc, "SNAP", "Orkut"), format = "RB")[1]
loaded_matrix = RutherfordBoeingData(joinpath(orkut_path, "com-Orkut.rb"));
graph = SimpleDiGraph(loaded_matrix.data)

#graph = dorogovtsev_mendes(150)
A_cpu = transpose(
convert(
use_dataset = true
graph = dorogovtsev_mendes(150)
if use_dataset
ssmc = ssmc_db();
orkut_path = fetch_ssmc(ssmc_matrices(ssmc, "SNAP", "Orkut"), format = "RB")[1]
nlpkkt_path = fetch_ssmc(ssmc_matrices(ssmc, "Schenk", "nlpkkt160"), format = "RB")[1]

#loaded_matrix = RutherfordBoeingData(joinpath(orkut_path, "com-Orkut.rb"));
loaded_matrix = RutherfordBoeingData(joinpath(nlpkkt_path, "nlpkkt160.rb"));
graph = SimpleDiGraph(loaded_matrix.data)
else
graph = dorogovtsev_mendes(150)
end
A_cpu = transpose(convert(
SparseMatrixCSC{MAIN_TYPE,Int32},
adjacency_matrix(graph, MAIN_TYPE; dir = :both),
),
)
#A2 = convert(
# SparseMatrixCSC{Bool,Int32},
# adjacency_matrix(graph, Bool; dir = :both),
#)

#A_T_gpu2 = SparseGPUMatrixCSR(transpose(A2), BACKEND)
))



SIZE = size(A_cpu, 2)
SIZE_2 = 32
A_T = SparseGPUMatrixSELL(A_cpu, BACKEND)
A_T2 = SparseGPUMatrixCSR(A_cpu, BACKEND)

SIZE_2 = 8

B_cpu = rand(MAIN_TYPE, SIZE, SIZE_2);
b_cpu = B_cpu[:, 1];
C_cpu = zeros(MAIN_TYPE, SIZE, SIZE_2);
C_cpu = zeros(RES_TYPE, SIZE, SIZE_2);


A_T = SparseGPUMatrixSELL(A_cpu, BACKEND)
A_T2 = SparseGPUMatrixCSR(A_cpu, BACKEND)
B = KernelAbstractions.zeros(BACKEND, MAIN_TYPE, SIZE, SIZE_2);
copyto!(B, B_cpu);
b = KernelAbstractions.zeros(BACKEND, MAIN_TYPE, SIZE);
copyto!(b, b_cpu);
C = KernelAbstractions.zeros(BACKEND, MAIN_TYPE, SIZE, SIZE_2);
c = KernelAbstractions.zeros(BACKEND, MAIN_TYPE, SIZE);
C = KernelAbstractions.zeros(BACKEND, RES_TYPE, SIZE, SIZE_2);
c = KernelAbstractions.zeros(BACKEND, RES_TYPE, SIZE);

mask = rand(Bool, SIZE)
mask_dense = KernelAbstractions.zeros(BACKEND, Bool, SIZE)
Expand All @@ -169,7 +174,14 @@ isapprox(C_cpu, C_res)
end
CUDA.synchronize()
end
c_res = zeros(MAIN_TYPE, SIZE);
@benchmark begin
for _ = 1:SIZE_2
gpu_spmv!(c, A_T2, b, mask = mask_dense)
end
CUDA.synchronize()
end

c_res = zeros(RES_TYPE, SIZE);
copyto!(c_res, c);
c_cpu = A_cpu * b_cpu .* mask;
isapprox(c_cpu, c_res)
Expand Down Expand Up @@ -201,7 +213,7 @@ isapprox(mat_res_cpu, vec_res)


@benchmark begin
mat_res = GPUGraphs.shortest_path(A_T2, convert(Vector{Int32}, range(1, SIZE_2)));
mat_res = GPUGraphs.shortest_path(A_T, convert(Vector{Int32}, range(1, SIZE_2)));
KernelAbstractions.synchronize(BACKEND)
end

Expand Down
Loading