-
Notifications
You must be signed in to change notification settings - Fork 285
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into openai-instrumentor
- Loading branch information
Showing
1 changed file
with
127 additions
and
0 deletions.
There are no files selected for viewing
127 changes: 127 additions & 0 deletions
127
scripts/data/build_llama_index_with_markdown_section_summaries.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
import argparse | ||
import glob | ||
import itertools | ||
import logging | ||
import os | ||
import pathlib | ||
import re | ||
import sys | ||
|
||
from llama_index import LLMPredictor, ServiceContext, VectorStoreIndex | ||
from llama_index.embeddings import OpenAIEmbedding | ||
from llama_index.llms import OpenAI | ||
from llama_index.node_parser import SimpleNodeParser | ||
from llama_index.node_parser.extractors import (MetadataExtractor, | ||
QuestionsAnsweredExtractor, | ||
SummaryExtractor) | ||
from llama_index.schema import Document | ||
from llama_index.text_splitter import SentenceSplitter | ||
|
||
|
||
def read_markdown_files(directory): | ||
markdown_files = [] | ||
# Recursively traverse the directory | ||
for root, _, _ in os.walk(directory): | ||
# Match markdown files using glob pattern | ||
markdown_files.extend(glob.glob(os.path.join(root, "*.md"))) | ||
markdown_content = dict() | ||
for file_path in markdown_files: | ||
with open(file_path, "r") as file: | ||
content = file.read() | ||
markdown_content[file_path] = content | ||
return markdown_content | ||
|
||
|
||
def markdown_header_splitter(text): | ||
splits = [] | ||
header_metadata = [] | ||
current_split = "" | ||
current_headers = [] | ||
codeblock_delimiters = 0 | ||
|
||
def in_codeblock(delimiter_count): | ||
return delimiter_count % 2 == 1 | ||
|
||
def header_level(header): | ||
pattern = re.compile("(#*)(.*)") | ||
return len(pattern.match(header).groups()[0]) | ||
|
||
lines = text.splitlines() | ||
for line in lines: | ||
if line.startswith("```"): | ||
codeblock_delimiters += 1 | ||
|
||
if line.startswith("#") and not in_codeblock(codeblock_delimiters): | ||
if current_split: | ||
splits.append(current_split) | ||
header_metadata.append(current_headers) | ||
current_split = "" | ||
current_header_level = header_level(line) | ||
current_headers = list( | ||
itertools.takewhile( | ||
lambda h: header_level(h) < current_header_level, current_headers | ||
) | ||
) | ||
current_headers.append(line) | ||
else: | ||
current_split += f"{line}\n" | ||
|
||
if current_split: | ||
splits.append(current_split) | ||
header_metadata.append(current_headers) | ||
|
||
return splits, header_metadata | ||
|
||
|
||
if __name__ == "__main__": | ||
logger = logging.getLogger(__name__) | ||
logging.basicConfig(level=logging.INFO, stream=sys.stdout) | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"docs_dir", | ||
type=str, | ||
help="Path to Arize docs repo.", | ||
) | ||
parser.add_argument( | ||
"persist_dir", | ||
type=str, | ||
help="Path to directory where index will be persisted.", | ||
) | ||
args = parser.parse_args() | ||
|
||
# specify llm | ||
llm_predictor_chatgpt = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-4")) | ||
service_context = ServiceContext.from_defaults( | ||
llm_predictor=llm_predictor_chatgpt, chunk_size_limit=1024 | ||
) | ||
|
||
# documents | ||
logger.info(f"Reading documentation from {args.docs_dir}...") | ||
docs = [] | ||
docpath = pathlib.Path(args.docs_dir).expanduser() | ||
markdown_files = read_markdown_files(docpath) | ||
for filepath, md in markdown_files.items(): | ||
splits, headers = markdown_header_splitter(md) | ||
for text, header in zip(splits, headers): | ||
docs.append(Document(text=text, metadata={"headers": header})) | ||
|
||
# nodes | ||
logger.info("Extracting metadata from each chunk...") | ||
nodes = SimpleNodeParser.from_defaults( | ||
chunk_size=1024, | ||
text_splitter=SentenceSplitter(), | ||
metadata_extractor=MetadataExtractor(extractors=[QuestionsAnsweredExtractor()]), | ||
).get_nodes_from_documents(docs, show_progress=True) | ||
summarizer = SummaryExtractor(service_context=service_context) | ||
summaries = summarizer.extract(nodes) | ||
|
||
embed_model = OpenAIEmbedding() | ||
logger.info("Constructing chunk embeddings from summaries...") | ||
for node, summary in zip(nodes, summaries): | ||
node.embedding = embed_model.get_text_embedding(summary["section_summary"]) | ||
|
||
# index | ||
index = VectorStoreIndex(nodes=nodes) | ||
index.storage_context.persist(persist_dir=args.persist_dir) | ||
logger.info(f"Persisted index to '{args.persist_dir}'") |