Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: Add summary index builder script #1552

Merged
merged 2 commits into from
Oct 4, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
127 changes: 127 additions & 0 deletions scripts/data/build_llama_index_with_markdown_section_summaries.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
import argparse
import glob
import itertools
import logging
import os
import pathlib
import re
import sys

from llama_index import LLMPredictor, ServiceContext, VectorStoreIndex
from llama_index.embeddings import OpenAIEmbedding
from llama_index.llms import OpenAI
from llama_index.node_parser import SimpleNodeParser
from llama_index.node_parser.extractors import (MetadataExtractor,
QuestionsAnsweredExtractor,
SummaryExtractor)
from llama_index.schema import Document
from llama_index.text_splitter import SentenceSplitter


def read_markdown_files(directory):
markdown_files = []
# Recursively traverse the directory
for root, _, _ in os.walk(directory):
# Match markdown files using glob pattern
markdown_files.extend(glob.glob(os.path.join(root, "*.md")))
markdown_content = dict()
for file_path in markdown_files:
with open(file_path, "r") as file:
content = file.read()
markdown_content[file_path] = content
return markdown_content


def markdown_header_splitter(text):
splits = []
header_metadata = []
current_split = ""
current_headers = []
codeblock_delimiters = 0

def in_codeblock(delimiter_count):
return delimiter_count % 2 == 1

def header_level(header):
pattern = re.compile("(#*)(.*)")
return len(pattern.match(header).groups()[0])

lines = text.splitlines()
for line in lines:
if line.startswith("```"):
codeblock_delimiters += 1

if line.startswith("#") and not in_codeblock(codeblock_delimiters):
if current_split:
splits.append(current_split)
header_metadata.append(current_headers)
current_split = ""
current_header_level = header_level(line)
current_headers = list(
itertools.takewhile(
lambda h: header_level(h) < current_header_level, current_headers
)
)
current_headers.append(line)
else:
current_split += f"{line}\n"

if current_split:
splits.append(current_split)
header_metadata.append(current_headers)

return splits, header_metadata


if __name__ == "__main__":
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, stream=sys.stdout)

parser = argparse.ArgumentParser()
parser.add_argument(
"docs_dir",
type=str,
help="Path to Arize docs repo.",
)
parser.add_argument(
"persist_dir",
type=str,
help="Path to directory where index will be persisted.",
)
args = parser.parse_args()

# specify llm
llm_predictor_chatgpt = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-4"))
service_context = ServiceContext.from_defaults(
llm_predictor=llm_predictor_chatgpt, chunk_size_limit=1024
)

# documents
logger.info(f"Reading documentation from {args.docs_dir}...")
docs = []
docpath = pathlib.Path(args.docs_dir).expanduser()
markdown_files = read_markdown_files(docpath)
for filepath, md in markdown_files.items():
splits, headers = markdown_header_splitter(md)
for text, header in zip(splits, headers):
docs.append(Document(text=text, metadata={"headers": header}))

# nodes
logger.info("Extracting metadata from each chunk...")
nodes = SimpleNodeParser.from_defaults(
chunk_size=1024,
text_splitter=SentenceSplitter(),
metadata_extractor=MetadataExtractor(extractors=[QuestionsAnsweredExtractor()]),
).get_nodes_from_documents(docs, show_progress=True)
summarizer = SummaryExtractor(service_context=service_context)
summaries = summarizer.extract(nodes)

embed_model = OpenAIEmbedding()
logger.info("Constructing chunk embeddings from summaries...")
for node, summary in zip(nodes, summaries):
node.embedding = embed_model.get_text_embedding(summary["section_summary"])

# index
index = VectorStoreIndex(nodes=nodes)
index.storage_context.persist(persist_dir=args.persist_dir)
logger.info(f"Persisted index to '{args.persist_dir}'")
Loading