The most straightforward way to install the most recent version of AnanseScanpy is via conda using PyPI.
If you have not used Bioconda before, first set up the necessary channels (in this order!). You only have to do this once.
$ conda config --add channels defaults
$ conda config --add channels bioconda
$ conda config --add channels conda-forge
Then install AnanseScanpy with:
$ conda install anansescanpy
$ pip install anansescanpy
$ git clone https://github.com/Arts-of-coding/AnanseScanpy.git
$ cd AnanseScanpy
$ conda env create -f requirements.yaml
$ conda activate AnanseScanpy
$ pip install -e .
$ pip install jupyter
$ python3
$ jupyter notebook
$ wget https://zenodo.org/records/7575107/files/rna_PBMC.h5ad?download=1 -O scANANSE/rna_PBMC.h5ad
$ wget https://zenodo.org/records/7575107/files/atac_PBMC.h5ad?download=1 -O scANANSE/atac_PBMC.h5ad
Follow the instructions its respective github page, https://github.com/vanheeringen-lab/anansnake Next automatically use the generated files to run GRN analysis using your single cell cluster data:
snakemake --use-conda --conda-frontend mamba \
--configfile scANANSE/analysis/config.yaml \
--snakefile scANANSE/anansnake/Snakefile \
--resources mem_mb=48_000 --cores 12
- Jos Smits and his Seurat equivalent of this package https://github.com/JGASmits/AnanseSeurat
- Siebren Frohlich and his anansnake implementation https://github.com/vanheeringen-lab/anansnake
Smits JGA, Arts JA, Frölich S et al. scANANSE gene regulatory network and motif analysis of single-cell clusters [version 1; peer review: awaiting peer review]. F1000Research 2023, 12:243 (https://doi.org/10.12688/f1000research.130530.1)