Skip to content

Ascend/pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ascend Extension for PyTorch

Overview

This repository develops the Ascend Extension for PyTorch named torch_npu to adapt Ascend NPU to PyTorch so that developers who use the PyTorch can obtain powerful compute capabilities of Ascend AI Processors.

Ascend is a full-stack AI computing infrastructure for industry applications and services based on Huawei Ascend processors and software. For more information about Ascend, see Ascend Community.

Installation

From Binary

Provide users with wheel package to quickly install torch_npu. Before installing torch_npu, complete the installation of CANN according to Ascend Auxiliary Software. To obtain the CANN installation package, refer to the CANN Installation.

  1. Install PyTorch

Install PyTorch through pip.

For Aarch64:

pip3 install torch==2.1.0

For x86:

pip3 install torch==2.1.0+cpu  --index-url https://download.pytorch.org/whl/cpu
  1. Install torch-npu dependencies

Run the following command to install dependencies.

pip3 install pyyaml
pip3 install setuptools

If the installation fails, use the download link or visit the PyTorch official website to download the installation package of the corresponding version.

OS arch Python version link
x86 Python3.8 link
x86 Python3.9 link
x86 Python3.10 link
x86 Python3.11 link
aarch64 Python3.8 link
aarch64 Python3.9 link
aarch64 Python3.10 link
aarch64 Python3.11 link
  1. Install torch-npu
pip3 install torch-npu==2.1.0.post10

From Source

In some special scenarios, users may need to compile torch-npu by themselves.Select a branch in table Ascend Auxiliary Software and a Python version in table PyTorch and Python Version Matching Table first. The docker image is recommended for compiling torch-npu through the following steps(It is recommended to mount the working path only and avoid the system path to reduce security risks.), the generated .whl file path is ./dist/. Note that gcc version has the following constraints if you try to compile without using docker image: we recommend to use gcc 10.2 for ARM and gcc 9.3.1 for X86.

  1. Clone torch-npu

    git clone https://github.com/ascend/pytorch.git -b 2.1.0-6.0.0 --depth 1
    
  2. Build Docker Image

    cd pytorch/ci/docker/{arch} # {arch} for X86 or ARM
    docker build -t manylinux-builder:v1 .
    
  3. Enter Docker Container

    docker run -it -v /{code_path}/pytorch:/home/pytorch manylinux-builder:v1 bash
    # {code_path} is the torch_npu source code path
    
  4. Compile torch-npu

    Take Python 3.8 as an example.

    cd /home/pytorch
    bash ci/build.sh --python=3.8
    

Getting Started

Prerequisites

Initialize CANN environment variable by running the command as shown below.

# Default path, change it if needed.
source /usr/local/Ascend/ascend-toolkit/set_env.sh

Quick Verification

You can quickly experience Ascend NPU by the following simple examples.

import torch
import torch_npu

x = torch.randn(2, 2).npu()
y = torch.randn(2, 2).npu()
z = x.mm(y)

print(z)

User Manual

Refer to API of Ascend Extension for PyTorch for more detailed informations.

PyTorch and Python Version Matching Table

PyTorch Version Python Version
PyTorch1.11.0 Python3.7.x(>=3.7.5),Python3.8.x,Python3.9.x,Python3.10.x
PyTorch2.1.0 Python3.8.x,Python3.9.x,Python3.10.x,Python3.11.x
PyTorch2.2.0 Python3.8.x,Python3.9.x,Python3.10.x
PyTorch2.3.1 Python3.8.x,Python3.9.x,Python3.10.x,Python3.11.x
PyTorch2.4.0 Python3.8.x,Python3.9.x,Python3.10.x,Python3.11.x

Ascend Auxiliary Software

PyTorch Extension versions follow the naming convention {PyTorch version}-{Ascend version}, where the former represents the PyTorch version compatible with the PyTorch Extension, and the latter is used to match the CANN version. The detailed matching is as follows:

CANN Version Supported PyTorch Version Supported Extension Version Github Branch
CANN 8.0.0 2.4.0 2.4.0.post2 v2.4.0-6.0.0
2.3.1 2.3.1.post4 v2.3.1-6.0.0
2.1.0 2.1.0.post10 v2.1.0-6.0.0
CANN 8.0.RC3 2.4.0 2.4.0 v2.4.0-6.0.rc3
2.3.1 2.3.1.post2 v2.3.1-6.0.rc3
2.1.0 2.1.0.post8 v2.1.0-6.0.rc3
CANN 8.0.RC2 2.3.1 2.3.1 v2.3.1-6.0.rc2
2.2.0 2.2.0.post2 v2.2.0-6.0.rc2
2.1.0 2.1.0.post6 v2.1.0-6.0.rc2
1.11.0 1.11.0.post14 v1.11.0-6.0.rc2
CANN 8.0.RC2.alpha002 2.3.1 2.3.1rc1 v2.3.1
CANN 8.0.RC1 2.2.0 2.2.0 v2.2.0-6.0.rc1
2.1.0 2.1.0.post4 v2.1.0-6.0.rc1
1.11.0 1.11.0.post11 v1.11.0-6.0.rc1
CANN 7.0.0 2.1.0 2.1.0 v2.1.0-5.0.0
2.0.1 2.0.1.post1 v2.0.1-5.0.0
1.11.0 1.11.0.post8 v1.11.0-5.0.0
CANN 7.0.RC1 2.1.0 2.1.0.rc1 v2.1.0-5.0.rc3
2.0.1 2.0.1 v2.0.1-5.0.rc3
1.11.0 1.11.0.post4 v1.11.0-5.0.rc3
CANN 6.3.RC3.1 1.11.0 1.11.0.post3 v1.11.0-5.0.rc2.2
CANN 6.3.RC3 1.11.0 1.11.0.post2 v1.11.0-5.0.rc2.1
CANN 6.3.RC2 2.0.1 2.0.1.rc1 v2.0.1-5.0.rc2
1.11.0 1.11.0.post1 v1.11.0-5.0.rc2
1.8.1 1.8.1.post2 v1.8.1-5.0.rc2
CANN 6.3.RC1 1.11.0 1.11.0 v1.11.0-5.0.rc1
1.8.1 1.8.1.post1 v1.8.1-5.0.rc1
CANN 6.0.1 1.5.0 1.5.0.post8 v1.5.0-3.0.0
1.8.1 1.8.1 v1.8.1-3.0.0
1.11.0 1.11.0.rc2(beta) v1.11.0-3.0.0
CANN 6.0.RC1 1.5.0 1.5.0.post7 v1.5.0-3.0.rc3
1.8.1 1.8.1.rc3 v1.8.1-3.0.rc3
1.11.0 1.11.0.rc1(beta) v1.11.0-3.0.rc3
CANN 5.1.RC2 1.5.0 1.5.0.post6 v1.5.0-3.0.rc2
1.8.1 1.8.1.rc2 v1.8.1-3.0.rc2
CANN 5.1.RC1 1.5.0 1.5.0.post5 v1.5.0-3.0.rc1
1.8.1 1.8.1.rc1 v1.8.1-3.0.rc1
CANN 5.0.4 1.5.0 1.5.0.post4 2.0.4.tr5
CANN 5.0.3 1.8.1 1.5.0.post3 2.0.3.tr5
CANN 5.0.2 1.5.0 1.5.0.post2 2.0.2.tr5

Hardware support

The Ascend training device includes the following models, all of which can be used as training environments for PyTorch models

Product series Product model
Atlas Training series products Atlas 800(model: 9000)
Atlas 800(model:9010)
Atlas 900 PoD(model:9000)
Atlas 300T(model:9000)
Atlas 300T Pro(model:9000)
Atlas A2 Training series products Atlas 800T A2
Atlas 900 A2 PoD
Atlas 200T A2 Box16
Atlas 300T A2

The Ascend inference device includes the following models, all of which can be used as inference environments for large models

Product series Product model
Atlas 800I A2 Inference product Atlas 800I A2

Pipeline Status

Due to the asynchronous development mechanism of upstream and downstream, incompatible modifications in upstream may cause some functions of torch_npu to be unavailable (only upstream and downstream development branches are involved, excluding stable branches). Therefore, we built a set of daily tasks that make it easy to detect relevant issues in time and fix them within 48 hours (under normal circumstances), providing users with the latest features and stable quality.

OS CANN Version(Docker Image) Upstream Branch Downstream Branch Period Status
openEuler 22.03 SP2 CANN 7.1 main master UTC 1200 daily Ascend NPU

Suggestions and Communication

Everyone is welcome to contribute to the community. If you have any questions or suggestions, you can submit Github Issues. We will reply to you as soon as possible. Thank you very much.

Branch Maintenance Policies

The version branches of AscendPyTorch have the following maintenance phases:

Status Duration Description
Planning 1-3 months Plan features.
Development 6-12 months Develop new features and fix issues, regularly release new versions. Different strategies are adopted for different versions of PyTorch, with a regular branch development cycle of 6 months and a long-term support branch development cycle of 12 months.
Maintained 1 year/3.5 years Regular Release branch for 1 year, Long Term Support branch maintenance for 3.5 years. Fix major issues, do not incorporate new features, and release patch versions based on the impact of fixed bugs.
End Of Life (EOL) N/A Do not accept any modification to a branch.

PyTorch Maintenance Policies

PyTorch Maintenance Policies Status Launch Date Subsequent Status EOL Date
2.4.0 Regular Release Development 2024/10/15 Expected to enter maintenance status from March 15, 2025
2.3.1 Regular Release Development 2024/06/06 Expected to enter maintenance status from December 6, 2024
2.2.0 Regular Release Maintained 2024/04/01 Expected to enter maintenance free status from September 10th, 2025
2.1.0 Long Term Support Development 2023/10/15 Expected to enter maintenance status from March 30, 2025
2.0.1 Regular Release EOL 2023/7/19 2024/3/14
1.11.0 Long Term Support Maintained 2023/4/19 Expected to enter maintenance free status from September 10th, 2025
1.8.1 Long Term Support EOL 2022/4/10 2023/4/10
1.5.0 Long Term Support EOL 2021/7/29 2022/7/29

Reference Documents

For more detailed information on installation guides, model migration, training/inference tutorials, and API lists, please refer to the Ascend Extension for PyTorch on the HiAI Community.

Document Name Document Link
Installation Guide link
Network Model Migration and Training link
Operator Adaptation link
API List (PyTorch and Custom Interfaces) link

License

Ascend Extension for PyTorch has a BSD-style license, as found in the LICENSE file.