forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added performance tests for Eager Dygraph #1 (PaddlePaddle#37638)
- Loading branch information
1 parent
48faf63
commit 7df301f
Showing
4 changed files
with
837 additions
and
0 deletions.
There are no files selected for viewing
324 changes: 324 additions & 0 deletions
324
paddle/fluid/eager/tests/performance_tests/benchmark_utils.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,324 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/eager/tests/performance_tests/benchmark_utils.h" | ||
|
||
#include <iostream> | ||
#include <memory> | ||
#include <set> | ||
#include <string> | ||
#include <vector> | ||
|
||
// Eager | ||
#include "paddle/fluid/eager/api/all.h" | ||
#include "paddle/fluid/eager/autograd_meta.h" | ||
#include "paddle/fluid/eager/backward.h" | ||
#include "paddle/fluid/eager/tests/test_utils.h" | ||
#include "paddle/fluid/eager/utils.h" | ||
|
||
// Eager Generated | ||
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h" | ||
|
||
// Fluid | ||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/imperative/basic_engine.h" | ||
#include "paddle/fluid/imperative/tracer.h" | ||
#include "paddle/fluid/memory/memcpy.h" | ||
|
||
#include "paddle/fluid/eager/tests/benchmark/benchmark_utils.h" | ||
|
||
#include "paddle/pten/core/kernel_registry.h" | ||
|
||
static size_t max_num_benchmark_runs = 5000; | ||
|
||
namespace egr { | ||
|
||
/* --------------------- */ | ||
/* ---- Eager Scale ---- */ | ||
/* --------------------- */ | ||
void benchmark_eager_scale(const EagerTensor& tensor, bool accuracy_check) { | ||
EagerTensor input_tensor = tensor; | ||
float scale = 2.0; | ||
float bias = 3.0; | ||
|
||
size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs; | ||
for (size_t i = 0; i < max_num_runs; i++) { | ||
input_tensor = | ||
egr::scale(input_tensor, scale, bias, true /*bias_after_scale*/, | ||
true /*trace_backward*/); | ||
} | ||
|
||
std::vector<EagerTensor> target_tensors = {input_tensor}; | ||
RunBackward(target_tensors, {}); | ||
|
||
if (accuracy_check) { | ||
// Examine Forward Grad (w.r.t max_num_runs = 10) | ||
CompareTensorWithValue<float>(input_tensor, 8189.0); | ||
// Examine Backward Grad (w.r.t max_num_runs = 10) | ||
CompareGradTensorWithValue<float>(tensor, 1024.0); | ||
} | ||
} | ||
|
||
/* ----------------------------------- */ | ||
/* ---- Eager Intermediate Matmul ---- */ | ||
/* ----------------------------------- */ | ||
void benchmark_eager_intermediate_matmul(const EagerTensor& X, | ||
const EagerTensor& Y, | ||
bool accuracy_check) { | ||
EagerTensor input_tensor0 = X; | ||
|
||
size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs; | ||
for (size_t i = 0; i < max_num_runs; i++) { | ||
input_tensor0 = matmul_v2_dygraph_function( | ||
input_tensor0, Y, {{"trans_x", false}, {"trans_y", false}}); | ||
} | ||
|
||
std::vector<EagerTensor> target_tensors = {input_tensor0}; | ||
RunBackward(target_tensors, {}); | ||
|
||
if (accuracy_check) { | ||
// Examine Forward Grad (w.r.t max_num_runs = 2) | ||
CompareVariableWithValue<float>(input_tensor0, 16); | ||
// Examine Backward Grad (w.r.t max_num_runs = 2) | ||
CompareGradVariableWithValue<float>(X, 16); | ||
CompareGradVariableWithValue<float>(Y, 16); | ||
} | ||
} | ||
|
||
/* -------------------------------- */ | ||
/* ---- Eager Intermediate MLP ---- */ | ||
/* -------------------------------- */ | ||
void benchmark_eager_intermediate_mlp(const EagerTensor& X, | ||
const std::vector<EagerTensor>& Ws, | ||
const std::vector<EagerTensor>& Bs, | ||
bool accuracy_check) { | ||
EagerTensor input0 = X; | ||
|
||
for (size_t i = 0; i < MLP_NUM_LINEAR; i++) { | ||
EagerTensor Out = matmul_v2_dygraph_function( | ||
input0, Ws[i], {{"trans_x", false}, {"trans_y", false}}); | ||
|
||
input0 = elementwise_add_dygraph_function(Out, Bs[i], {}); | ||
} | ||
|
||
EagerTensor Out = reduce_sum_dygraph_function(input0, {{"reduce_all", true}}); | ||
|
||
std::vector<EagerTensor> target_tensors = {Out}; | ||
RunBackward(target_tensors, {}); | ||
|
||
if (accuracy_check) { | ||
std::unordered_map<std::string, float> result = | ||
compute_mlp_expected_results(); | ||
|
||
// Examine Forward Grad (w.r.t max_num_runs = 2) | ||
CompareVariableWithValue<float>(Out, result["Out"]); | ||
|
||
// Examine Backward Grad (w.r.t max_num_runs = 2) | ||
CompareGradVariableWithValue<float>(X, result["GradX"]); | ||
CompareGradVariableWithValue<float>(Ws[0], result["GradW"]); | ||
} | ||
} | ||
|
||
} // namespace egr | ||
|
||
namespace paddle { | ||
namespace imperative { | ||
|
||
static void FluidCheckTensorValue(const std::shared_ptr<imperative::VarBase>& X, | ||
const paddle::platform::Place& place, | ||
float value) { | ||
auto* tensor = X->MutableVar()->GetMutable<framework::LoDTensor>(); | ||
float* t_ptr = tensor->mutable_data<float>(place); | ||
std::vector<float> host_data(tensor->numel()); | ||
if (place == paddle::platform::CUDAPlace()) { | ||
paddle::platform::DeviceContextPool& pool = | ||
paddle::platform::DeviceContextPool::Instance(); | ||
auto* dev_ctx = | ||
dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place)); | ||
auto stream = dev_ctx->stream(); | ||
|
||
paddle::memory::Copy(paddle::platform::CPUPlace(), host_data.data(), | ||
paddle::platform::CUDAPlace(), t_ptr, | ||
sizeof(float) * tensor->numel(), stream); | ||
t_ptr = host_data.data(); | ||
} | ||
VLOG(6) << "Tensor Value: " << t_ptr[0] << ", Expected Value: " << value; | ||
PADDLE_ENFORCE( | ||
t_ptr[0] == value, | ||
paddle::platform::errors::Fatal( | ||
"Detected numerical Error, Expected %f but got %f", value, t_ptr[0])); | ||
} | ||
|
||
static void FluidCheckGradTensorValue( | ||
const std::shared_ptr<imperative::VarBase>& X, | ||
const paddle::platform::Place& place, float value) { | ||
auto* grad_tensor = X->MutableGradVar()->GetMutable<framework::LoDTensor>(); | ||
float* g_ptr = grad_tensor->mutable_data<float>(place); | ||
std::vector<float> g_host_data(grad_tensor->numel()); | ||
if (place == paddle::platform::CUDAPlace()) { | ||
paddle::platform::DeviceContextPool& pool = | ||
paddle::platform::DeviceContextPool::Instance(); | ||
auto* dev_ctx = | ||
dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place)); | ||
auto stream = dev_ctx->stream(); | ||
|
||
paddle::memory::Copy(paddle::platform::CPUPlace(), g_host_data.data(), | ||
paddle::platform::CUDAPlace(), g_ptr, | ||
sizeof(float) * grad_tensor->numel(), stream); | ||
g_ptr = g_host_data.data(); | ||
} | ||
VLOG(6) << "Tensor Value: " << g_ptr[0] << ", Expected Value: " << value; | ||
PADDLE_ENFORCE( | ||
g_ptr[0] == value, | ||
paddle::platform::errors::Fatal( | ||
"Detected numerical Error, Expected %f but got %f", value, g_ptr[0])); | ||
} | ||
|
||
/* --------------------- */ | ||
/* ---- Fluid Scale ---- */ | ||
/* --------------------- */ | ||
// TODO(jiabin): Change this and remove nolint | ||
void benchmark_fluid_scale(const std::shared_ptr<imperative::VarBase>& X, | ||
const paddle::platform::Place& place, | ||
bool accuracy_check) { | ||
imperative::Tracer tracer; | ||
framework::AttributeMap attrs; | ||
|
||
attrs["use_mkldnn"] = false; | ||
attrs["scale"] = 2; | ||
attrs["bias"] = 3; | ||
attrs["bias_after_scale"] = true; | ||
|
||
std::shared_ptr<imperative::VarBase> tmp_out = X; | ||
|
||
size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs; | ||
for (size_t i = 0; i < max_num_runs; i++) { | ||
imperative::NameVarBaseMap ins = {{"X", {tmp_out}}}; | ||
imperative::NameVarBaseMap outs = { | ||
{"Out", | ||
{std::shared_ptr<imperative::VarBase>( | ||
new imperative::VarBase(true, "Out"))}}}; | ||
|
||
tracer.TraceOp("scale", ins, outs, attrs, place, true); | ||
|
||
tmp_out = outs["Out"][0]; | ||
} | ||
|
||
auto* engine = tracer.GetEngine(); | ||
std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr}; | ||
engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/); | ||
engine->Execute(); | ||
|
||
if (accuracy_check) { | ||
FluidCheckTensorValue(tmp_out, place, 8189.0); | ||
FluidCheckGradTensorValue(X, place, 1024.0); | ||
} | ||
} | ||
|
||
/* ---------------------- */ | ||
/* ---- Fluid Matmul ---- */ | ||
/* ---------------------- */ | ||
void benchmark_fluid_matmul(const std::shared_ptr<imperative::VarBase>& X, | ||
const std::shared_ptr<imperative::VarBase>& Y, | ||
const paddle::platform::Place& place, | ||
bool accuracy_check) { | ||
imperative::Tracer tracer; | ||
|
||
std::shared_ptr<imperative::VarBase> tmp_out = X; | ||
|
||
size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs; | ||
for (size_t i = 0; i < max_num_runs; i++) { | ||
framework::AttributeMap attrs; | ||
imperative::NameVarBaseMap ins = {{"X", {tmp_out}}, {"Y", {Y}}}; | ||
imperative::NameVarBaseMap outs = { | ||
{"Out", | ||
{std::shared_ptr<imperative::VarBase>( | ||
new imperative::VarBase(true, "Out"))}}}; | ||
|
||
tracer.TraceOp("matmul_v2", ins, outs, attrs, place, true); | ||
|
||
tmp_out = outs["Out"][0]; | ||
} | ||
|
||
auto* engine = tracer.GetEngine(); | ||
std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr}; | ||
engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/); | ||
engine->Execute(); | ||
|
||
if (accuracy_check) { | ||
FluidCheckTensorValue(tmp_out, place, 16); | ||
FluidCheckGradTensorValue(X, place, 16); | ||
FluidCheckGradTensorValue(Y, place, 16); | ||
} | ||
} | ||
|
||
/* ------------------- */ | ||
/* ---- Fluid MLP ---- */ | ||
/* ------------------- */ | ||
void benchmark_fluid_mlp( | ||
const std::shared_ptr<imperative::VarBase>& X, | ||
const std::vector<std::shared_ptr<imperative::VarBase>>& Ws, | ||
const std::vector<std::shared_ptr<imperative::VarBase>>& Bs, | ||
const paddle::platform::Place& place, bool accuracy_check) { | ||
imperative::Tracer tracer; | ||
|
||
imperative::NameVarBaseMap ins; | ||
imperative::NameVarBaseMap outs; | ||
framework::AttributeMap attrs; | ||
std::shared_ptr<imperative::VarBase> input0 = X; | ||
for (size_t i = 0; i < MLP_NUM_LINEAR; i++) { | ||
// Matmul0 | ||
ins = {{"X", {input0}}, {"Y", {Ws[0]}}}; | ||
outs = {{"Out", | ||
{std::shared_ptr<imperative::VarBase>( | ||
new imperative::VarBase(true, "Out"))}}}; | ||
|
||
tracer.TraceOp("matmul_v2", ins, outs, attrs, place, true); | ||
|
||
// EW-Add0 | ||
ins = {{"X", outs["Out"]}, {"Y", {Bs[i]}}}; | ||
outs = {{"Out", | ||
{std::shared_ptr<imperative::VarBase>( | ||
new imperative::VarBase(true, "Out"))}}}; | ||
|
||
tracer.TraceOp("elementwise_add", ins, outs, attrs, place, true); | ||
input0 = outs["Out"][0]; | ||
} | ||
|
||
// ReduceSum | ||
ins = {{"X", {input0}}}; | ||
outs = {{"Out", | ||
{std::shared_ptr<imperative::VarBase>( | ||
new imperative::VarBase(true, "Out"))}}}; | ||
attrs = {{"reduce_all", true}}; | ||
|
||
tracer.TraceOp("reduce_sum", ins, outs, attrs, place, true); | ||
|
||
auto* engine = tracer.GetEngine(); | ||
std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr}; | ||
engine->Init(outs["Out"], grad_tensors, false /*retain_graph*/); | ||
engine->Execute(); | ||
|
||
if (accuracy_check) { | ||
std::unordered_map<std::string, float> result = | ||
egr::compute_mlp_expected_results(); | ||
|
||
FluidCheckTensorValue(outs["Out"][0], place, result["Out"]); | ||
FluidCheckGradTensorValue(X, place, result["GradX"]); | ||
FluidCheckGradTensorValue(Ws[0], place, result["GradW"]); | ||
} | ||
} | ||
|
||
} // namespace imperative | ||
} // namespace paddle |
Oops, something went wrong.