Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[EN] Possible error in lecture 2.2 - Kaiming initialization #778

Merged
merged 1 commit into from
May 4, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/en/week02/02-2.md
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ Essentially, regularization tries to tell the system to minimize the cost functi

### Weight initialisation

The weights need to be initialised at random, however, they shouldn't be too large or too small such that output is roughly of the same variance as that of input. There are various weight initialisation tricks built into PyTorch. One of the tricks that works well for deep models is Kaiming initialisation where the variance of the weights is inversely proportional to square root of number of inputs.
The weights need to be initialised at random, however, they shouldn't be too large or too small such that output is roughly of the same variance as that of input. There are various weight initialisation tricks built into PyTorch. One of the tricks that works well for deep models is Kaiming initialisation where the standard deviation of the weights is inversely proportional to square root of number of inputs.


### Use dropout
Expand Down