forked from AUTOMATIC1111/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Reland "Add Densepose (TorchScript)" (AUTOMATIC1111#2459)
* Revert "Revert "Add Densepose (TorchScript)"" * 🐛 Fix unload
- Loading branch information
Showing
4 changed files
with
441 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
import torchvision # Fix issue Unknown builtin op: torchvision::nms | ||
import cv2 | ||
import numpy as np | ||
import torch | ||
from einops import rearrange | ||
from .densepose import DensePoseMaskedColormapResultsVisualizer, _extract_i_from_iuvarr, densepose_chart_predictor_output_to_result_with_confidences | ||
from modules import devices | ||
from annotator.annotator_path import models_path | ||
import os | ||
|
||
N_PART_LABELS = 24 | ||
result_visualizer = DensePoseMaskedColormapResultsVisualizer( | ||
alpha=1, | ||
data_extractor=_extract_i_from_iuvarr, | ||
segm_extractor=_extract_i_from_iuvarr, | ||
val_scale = 255.0 / N_PART_LABELS | ||
) | ||
remote_torchscript_path = "https://huggingface.co/LayerNorm/DensePose-TorchScript-with-hint-image/resolve/main/densepose_r50_fpn_dl.torchscript" | ||
torchscript_model = None | ||
model_dir = os.path.join(models_path, "densepose") | ||
|
||
def apply_densepose(input_image, cmap="viridis"): | ||
global torchscript_model | ||
if torchscript_model is None: | ||
model_path = os.path.join(model_dir, "densepose_r50_fpn_dl.torchscript") | ||
if not os.path.exists(model_path): | ||
from basicsr.utils.download_util import load_file_from_url | ||
load_file_from_url(remote_torchscript_path, model_dir=model_dir) | ||
torchscript_model = torch.jit.load(model_path, map_location="cpu").to(devices.get_device_for("controlnet")).eval() | ||
H, W = input_image.shape[:2] | ||
|
||
hint_image_canvas = np.zeros([H, W], dtype=np.uint8) | ||
hint_image_canvas = np.tile(hint_image_canvas[:, :, np.newaxis], [1, 1, 3]) | ||
input_image = rearrange(torch.from_numpy(input_image).to(devices.get_device_for("controlnet")), 'h w c -> c h w') | ||
pred_boxes, corase_segm, fine_segm, u, v = torchscript_model(input_image) | ||
|
||
extractor = densepose_chart_predictor_output_to_result_with_confidences | ||
densepose_results = [extractor(pred_boxes[i:i+1], corase_segm[i:i+1], fine_segm[i:i+1], u[i:i+1], v[i:i+1]) for i in range(len(pred_boxes))] | ||
|
||
if cmap=="viridis": | ||
result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_VIRIDIS | ||
hint_image = result_visualizer.visualize(hint_image_canvas, densepose_results) | ||
hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB) | ||
hint_image[:, :, 0][hint_image[:, :, 0] == 0] = 68 | ||
hint_image[:, :, 1][hint_image[:, :, 1] == 0] = 1 | ||
hint_image[:, :, 2][hint_image[:, :, 2] == 0] = 84 | ||
else: | ||
result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_PARULA | ||
hint_image = result_visualizer.visualize(hint_image_canvas, densepose_results) | ||
hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB) | ||
|
||
return hint_image | ||
|
||
def unload_model(): | ||
global torchscript_model | ||
if torchscript_model is not None: | ||
torchscript_model.cpu() |
Oops, something went wrong.