ICML'20: Searching to Exploit Memorization Effect in Learning from Corrupted Labels (PyTorch implementation).
=======
This is the code for the paper: Searching to Exploit Memorization Effect in Learning from Corrupted Labels Quanming Yao, Hansi Yang, Bo Han, Gang Niu, James T. Kwok.
Python = 3.7, PyTorch = 1.3.1, NumPy = 1.18.5, SciPy = 1.4.1 All packages can be installed by Conda.
Example usage for MNIST with 50% symmetric noise
python heng_mnist_main.py --noise_type symmetric --noise_rate 0.5 --num_workers 1 --n_iter 10 --n_samples 6
CIFAR-10 with 50% symmetric noise
python heng_main.py --noise_type symmetric --noise_rate 0.5 --num_workers 1 --n_iter 10 --n_samples 6
And CIFAR-100 with 50% symmetric noise
python heng_100_main.py --noise_type symmetric --noise_rate 0.5 --num_workers 1 --n_iter 10 --n_samples 6
Or see scripts (.sh files) for a quick start.
- Interns, research assistants, and researcher positions are available. See requirement