Skip to content

Q. Yao, H. Yang, B. Han, G. Niu, J. Kwok. Searching to Exploit Memorization Effect in Learning from Noisy Labels. ICML 2020

Notifications You must be signed in to change notification settings

LARS-research/S2E

Repository files navigation

S2E

ICML'20: Searching to Exploit Memorization Effect in Learning from Corrupted Labels (PyTorch implementation).

=======

This is the code for the paper: Searching to Exploit Memorization Effect in Learning from Corrupted Labels Quanming Yao, Hansi Yang, Bo Han, Gang Niu, James T. Kwok.

Requirements

Python = 3.7, PyTorch = 1.3.1, NumPy = 1.18.5, SciPy = 1.4.1 All packages can be installed by Conda.

Running S2E on benchmark dataset with synthetic noise (MNIST, CIFAR-10 and CIFAR-100)

Example usage for MNIST with 50% symmetric noise

python heng_mnist_main.py --noise_type symmetric --noise_rate 0.5 --num_workers 1 --n_iter 10 --n_samples 6

CIFAR-10 with 50% symmetric noise

python heng_main.py --noise_type symmetric --noise_rate 0.5 --num_workers 1 --n_iter 10 --n_samples 6

And CIFAR-100 with 50% symmetric noise

python heng_100_main.py --noise_type symmetric --noise_rate 0.5 --num_workers 1 --n_iter 10 --n_samples 6

Or see scripts (.sh files) for a quick start.

New Opportunities

  • Interns, research assistants, and researcher positions are available. See requirement

About

Q. Yao, H. Yang, B. Han, G. Niu, J. Kwok. Searching to Exploit Memorization Effect in Learning from Noisy Labels. ICML 2020

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published