-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding delta theta update in comment
- Loading branch information
Showing
129 changed files
with
483 additions
and
4,366 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -129,4 +129,5 @@ dmypy.json | |
.pyre/ | ||
|
||
data/ | ||
.idea/ | ||
.idea/ | ||
wandb/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
import torch.nn.functional as F | ||
from torch import nn | ||
from torch.nn.utils import spectral_norm | ||
|
||
|
||
class LocalLayer(nn.Module): | ||
|
||
def __init__(self, n_input=84, n_output=2, nonlinearity=False): | ||
super().__init__() | ||
self.nonlinearity = nonlinearity | ||
layers = [] | ||
if nonlinearity: | ||
layers.append(nn.ReLU()) | ||
|
||
layers.append(nn.Linear(n_input, n_output)) | ||
self.layer = nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
return self.layer(x) | ||
|
||
|
||
class CNNHyper(nn.Module): | ||
def __init__( | ||
self, n_nodes, embedding_dim, in_channels=3, out_dim=10, n_kernels=16, hidden_dim=100, | ||
spec_norm=False, n_hidden=1): | ||
super().__init__() | ||
|
||
self.in_channels = in_channels | ||
self.out_dim = out_dim | ||
self.n_kernels = n_kernels | ||
self.embeddings = nn.Embedding(num_embeddings=n_nodes, embedding_dim=embedding_dim) | ||
|
||
layers = [ | ||
spectral_norm(nn.Linear(embedding_dim, hidden_dim)) if spec_norm else nn.Linear(embedding_dim, hidden_dim), | ||
] | ||
for _ in range(n_hidden): | ||
layers.append(nn.ReLU(inplace=True)) | ||
layers.append( | ||
spectral_norm(nn.Linear(hidden_dim, hidden_dim)) if spec_norm else nn.Linear(hidden_dim, hidden_dim), | ||
) | ||
|
||
self.mlp = nn.Sequential(*layers) | ||
|
||
self.c1_weights = nn.Linear(hidden_dim, self.n_kernels * self.in_channels * 5 * 5) | ||
self.c1_bias = nn.Linear(hidden_dim, self.n_kernels) | ||
self.c2_weights = nn.Linear(hidden_dim, 2 * self.n_kernels * self.n_kernels * 5 * 5) | ||
self.c2_bias = nn.Linear(hidden_dim, 2 * self.n_kernels) | ||
self.l1_weights = nn.Linear(hidden_dim, 120 * 2 * self.n_kernels * 5 * 5) | ||
self.l1_bias = nn.Linear(hidden_dim, 120) | ||
self.l2_weights = nn.Linear(hidden_dim, 84 * 120) | ||
self.l2_bias = nn.Linear(hidden_dim, 84) | ||
# self.l3_weights = nn.Linear(hidden_dim, self.out_dim * 84) | ||
# self.l3_bias = nn.Linear(hidden_dim, self.out_dim) | ||
|
||
if spec_norm: | ||
self.c1_weights = spectral_norm(self.c1_weights) | ||
self.c1_bias = spectral_norm(self.c1_bias) | ||
self.c2_weights = spectral_norm(self.c2_weights) | ||
self.c2_bias = spectral_norm(self.c2_bias) | ||
self.l1_weights = spectral_norm(self.l1_weights) | ||
self.l1_bias = spectral_norm(self.l1_bias) | ||
self.l2_weights = spectral_norm(self.l2_weights) | ||
self.l2_bias = spectral_norm(self.l2_bias) | ||
# self.l3_weights = spectral_norm(self.l3_weights) | ||
# self.l3_bias = spectral_norm(self.l3_bias) | ||
|
||
def forward(self, idx): | ||
emd = self.embeddings(idx) | ||
features = self.mlp(emd) | ||
|
||
weights = { | ||
"conv1.weight": self.c1_weights(features).view(self.n_kernels, self.in_channels, 5, 5), | ||
"conv1.bias": self.c1_bias(features).view(-1), | ||
"conv2.weight": self.c2_weights(features).view(2 * self.n_kernels, self.n_kernels, 5, 5), | ||
"conv2.bias": self.c2_bias(features).view(-1), | ||
"fc1.weight": self.l1_weights(features).view(120, 2 * self.n_kernels * 5 * 5), | ||
"fc1.bias": self.l1_bias(features).view(-1), | ||
"fc2.weight": self.l2_weights(features).view(84, 120), | ||
"fc2.bias": self.l2_bias(features).view(-1), | ||
# "fc3.weight": self.l3_weights(features).view(self.out_dim, 84), | ||
# "fc3.bias": self.l3_bias(features).view(-1), | ||
} | ||
return weights | ||
|
||
|
||
class CNNTarget(nn.Module): | ||
def __init__(self, in_channels=3, n_kernels=16, out_dim=10): | ||
super().__init__() | ||
|
||
self.conv1 = nn.Conv2d(in_channels, n_kernels, 5) | ||
self.pool = nn.MaxPool2d(2, 2) | ||
self.conv2 = nn.Conv2d(n_kernels, 2 * n_kernels, 5) | ||
self.fc1 = nn.Linear(2 * n_kernels * 5 * 5, 120) | ||
self.fc2 = nn.Linear(120, 84) | ||
# self.fc3 = nn.Linear(84, out_dim) | ||
|
||
def forward(self, x): | ||
x = self.pool(F.relu(self.conv1(x))) | ||
x = self.pool(F.relu(self.conv2(x))) | ||
x = x.view(x.shape[0], -1) | ||
x = F.relu(self.fc1(x)) | ||
x = F.relu(self.fc2(x)) | ||
# x = self.fc3(x) | ||
return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
from experiments.hetro.dataset import gen_random_loaders | ||
|
||
|
||
class BaseNodesForLocal: | ||
def __init__( | ||
self, | ||
data_name, | ||
data_path, | ||
n_nodes, | ||
base_layer, | ||
layer_config, | ||
base_optimizer, | ||
optimizer_config, | ||
device, | ||
batch_size=128, | ||
classes_per_node=2, | ||
): | ||
|
||
self.data_name = data_name | ||
self.data_path = data_path | ||
self.n_nodes = n_nodes | ||
self.classes_per_node = classes_per_node | ||
self.batch_size = batch_size | ||
|
||
self.local_layers = [ | ||
base_layer(**layer_config).to(device) for _ in range(self.n_nodes) | ||
] | ||
self.local_optimizers = [ | ||
base_optimizer(self.local_layers[i].parameters(), **optimizer_config) for i in range(self.n_nodes) | ||
] | ||
|
||
self.train_loaders, self.val_loaders, self.test_loaders = gen_random_loaders( | ||
self.data_name, | ||
self.data_path, | ||
self.n_nodes, | ||
self.batch_size, | ||
self.classes_per_node | ||
) | ||
|
||
def __len__(self): | ||
return self.n_nodes |
Oops, something went wrong.