Skip to content

Commit

Permalink
Merge branch 'develop' into 1.1.x
Browse files Browse the repository at this point in the history
  • Loading branch information
j-ittner committed Feb 15, 2021
2 parents 58ca1c2 + 63a9bb7 commit 7c78e1c
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 103 deletions.
72 changes: 37 additions & 35 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,40 +8,41 @@ explanations of your supervised machine learning models.

FACET is composed of the following key components:

+-----------------+---------------------------------------------------------------------+
| |spacer| | **Model Inspection** |
| | |
| |inspect| | FACET introduces a new algorithm to quantify dependencies and |
| | interactions between features in ML models. |
| | This new tool for human-explainable AI adds a new, global |
| | perspective to the observation-level explanations provided by the |
| | popular `SHAP <https://shap.readthedocs.io/en/stable/>`__ approach. |
| | To learn more about FACET’s model inspection capabilities, see the |
| | getting started example below. |
+-----------------+---------------------------------------------------------------------+
| |spacer| | **Model Simulation** |
| | |
| |sim| | FACET’s model simulation algorithms use ML models for |
| | *virtual experiments* to help identify scenarios that optimise |
| | predicted outcomes. |
| | To quantify the uncertainty in simulations, FACET utilises a range |
| | of bootstrapping algorithms including stationary and stratified |
| | bootstraps. |
| | For an example of FACET’s bootstrap simulations, see the |
| | quickstart example below. |
+-----------------+---------------------------------------------------------------------+
| |spacer| | **Enhanced Machine Learning Workflow** |
| | |
| |pipe| | FACET offers an efficient and transparent machine learning |
| | workflow, enhancing |
| | `scikit-learn <https://scikit-learn.org/stable/index.html>`__'s |
| | tried and tested pipelining paradigm with new capabilities for model|
| | selection, inspection, and simulation. |
| | FACET also introduces |
| | `sklearndf <https://github.com/BCG-Gamma/sklearndf>`__, an augmented|
| | version of *scikit-learn* with enhanced support for *pandas* data |
| | frames that ensures end-to-end traceability of features. |
+-----------------+---------------------------------------------------------------------+
+-----------------+-----------------------------------------------------------------------+
| |spacer| | **Model Inspection** |
| | |
| |inspect| | FACET introduces a new algorithm to quantify dependencies and |
| | interactions between features in ML models. |
| | This new tool for human-explainable AI adds a new, global |
| | perspective to the observation-level explanations provided by the |
| | popular `SHAP <https://shap.readthedocs.io/en/stable/>`__ approach. |
| | To learn more about FACET’s model inspection capabilities, see the |
| | getting started example below. |
+-----------------+-----------------------------------------------------------------------+
| |spacer| | **Model Simulation** |
| | |
| |sim| | FACET’s model simulation algorithms use ML models for |
| | *virtual experiments* to help identify scenarios that optimise |
| | predicted outcomes. |
| | To quantify the uncertainty in simulations, FACET utilises a range |
| | of bootstrapping algorithms including stationary and stratified |
| | bootstraps. |
| | For an example of FACET’s bootstrap simulations, see the |
| | quickstart example below. |
+-----------------+-----------------------------------------------------------------------+
| |spacer| | **Enhanced Machine Learning Workflow** |
| | |
| |pipe| | FACET offers an efficient and transparent machine learning |
| | workflow, enhancing |
| | `scikit-learn <https://scikit-learn.org/stable/index.html>`__'s |
| | tried and tested pipelining paradigm with new capabilities for model |
| | selection, inspection, and simulation. |
| | FACET also introduces |
| | `sklearndf <https://github.com/BCG-Gamma/sklearndf>`__ |
| | [`documentation <https://bcg-gamma.github.io/sklearndf/index.html>`__]|
| | an augmented version of *scikit-learn* with enhanced support for |
| | *pandas* data frames that ensures end-to-end traceability of features.|
+-----------------+-----------------------------------------------------------------------+

.. Begin-Badges
Expand Down Expand Up @@ -73,7 +74,8 @@ Quickstart
----------------------

The following quickstart guide provides a minimal example workflow to get you
up and running with FACET.
up and running with FACET. For additional tutorials and the API guide see
the `FACET documentation <https://bcg-gamma.github.io/facet/>`__.

Enhanced Machine Learning Workflow
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Expand Down
71 changes: 3 additions & 68 deletions sphinx/auxiliary/Diabetes_getting_started_example.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -4,60 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n"
]
},
{
"attachments": {
"Gamma_Facet_Logo_RGB_LB.svg": {
"image/svg+xml": [
"PHN2ZyB3aWR0aD0iNzgxIiBoZWlnaHQ9IjEzNCIgdmlld0JveD0iMCAwIDc4MSAxMzQiIGZpbGw9Im5vbmUiIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZyI+DQo8cGF0aCBkPSJNMTkwLjQ1NyA3Ni43ODA2VjgyLjk5MDZDMTg4LjM4NyA4NC41MjA2IDE4NC41MTcgODUuNjAwNiAxODEuNDU3IDg1LjYwMDZDMTY2Ljg3NyA4NS42MDA2IDE2NC44MDcgNzEuMDIwNiAxNjQuODA3IDY2LjM0MDZDMTY0LjgwNyA2MS42NjA2IDE2Ni44NzcgNDcuODAwNiAxODEuNDU3IDQ3LjgwMDZDMTg1Ljg2NyA0Ny44MDA2IDE5MS41MzcgNTAuNTAwNiAxOTUuMzE3IDUzLjgzMDZDMTk1Ljk0NyA1NC4zNzA2IDE5Ni45MzcgNTQuMzcwNiAxOTcuNTY3IDUzLjc0MDZMMjA0LjMxNyA0Ni4zNjA2QzIwNC45NDcgNDUuNzMwNiAyMDQuOTQ3IDQ0LjY1MDYgMjA0LjMxNyA0NC4wMjA2QzE5OC4xOTcgMzcuOTkwNiAxOTEuMDg3IDM0LjIxMDYgMTgxLjQ1NyAzNC4yMTA2QzE1Ny41MTcgMzQuMjEwNiAxNTAuMTM3IDUzLjM4MDYgMTUwLjEzNyA2Ni41MjA2QzE1MC4xMzcgODAuMDIwNiAxNTcuNTE3IDk4LjkyMDYgMTgxLjQ1NyA5OC45MjA2QzE5MC43MjcgOTguOTIwNiAxOTcuODM3IDk1Ljg2MDYgMjAzLjc3NyA5MC4zNzA2QzIwNC40OTcgODkuNjUwNiAyMDQuOTQ3IDg4LjY2MDYgMjA0Ljk0NyA4Ny41ODA2VjY1LjE3MDZDMjA0Ljk0NyA2NC4yNzA2IDIwNC4yMjcgNjMuNTUwNiAyMDMuMzI3IDYzLjU1MDZIMTgwLjEwN0MxNzkuMjA3IDYzLjU1MDYgMTc4LjQ4NyA2NC4yNzA2IDE3OC40ODcgNjUuMTcwNlY3NS4xNjA2QzE3OC40ODcgNzYuMDYwNiAxNzkuMjA3IDc2Ljc4MDYgMTgwLjEwNyA3Ni43ODA2SDE5MC40NTdaIiBmaWxsPSJibGFjayIvPg0KPHBhdGggZD0iTTI0MS4wOCAzNS44MzA2QzI0MC43MiAzNC45MzA2IDIzOS44MiAzNC4zOTA2IDIzOC45MiAzNC4zOTA2QzIzOC4wMiAzNC4zOTA2IDIzNy4xMiAzNC45MzA2IDIzNi43NiAzNS44MzA2TDIwOS4xMyA5Ni42NzA2QzIwOC44NiA5Ny4zMDA2IDIwOS40IDk4LjExMDYgMjEwLjEyIDk4LjExMDZIMjIyLjk5QzIyMy45OCA5OC4xMTA2IDIyNC44OCA5Ny40ODA2IDIyNS4yNCA5Ni41ODA2TDIyOS43NCA4NS4zMzA2SDI0OC4yOEwyNTIuNzggOTYuNTgwNkMyNTMuMTQgOTcuNDgwNiAyNTQuMDQgOTguMTEwNiAyNTUuMDMgOTguMTEwNkgyNjcuOUMyNjguNjIgOTguMTEwNiAyNjkuMTYgOTcuMzAwNiAyNjguOCA5Ni42NzA2TDI0MS4wOCAzNS44MzA2Wk0yMzkuMDEgNjIuMzgwNkwyNDMuNjkgNzQuMDgwNkgyMzQuMjRMMjM5LjAxIDYyLjM4MDZaIiBmaWxsPSJibGFjayIvPg0KPHBhdGggZD0iTTMxMC43NTYgNzEuMDIwNkwyOTQuNDY2IDM1Ljc0MDZDMjk0LjEwNiAzNC45MzA2IDI5My4yMDYgMzQuMzkwNiAyOTIuMzA2IDM0LjM5MDZDMjkxLjQ5NiAzNC4zOTA2IDI5MC42ODYgMzQuOTMwNiAyOTAuMzI2IDM1LjgzMDZMMjY4LjQ1NiA5Ni41ODA2QzI2OC4xODYgOTcuMzAwNiAyNjguNzI2IDk4LjExMDYgMjY5LjUzNiA5OC4xMTA2SDI4MS41OTZDMjgyLjU4NiA5OC4xMTA2IDI4My4zOTYgOTcuNDgwNiAyODMuNzU2IDk2LjU4MDZMMjk0LjEwNiA2NS4yNjA2TDMwOC42ODYgOTcuNDgwNkMzMDkuMDQ2IDk4LjI5MDYgMzA5Ljg1NiA5OC44MzA2IDMxMC43NTYgOTguODMwNkMzMTEuNjU2IDk4LjgzMDYgMzEyLjQ2NiA5OC4yOTA2IDMxMi44MjYgOTcuNDgwNkwzMjcuNDA2IDY1LjI2MDZMMzM3Ljc1NiA5Ni41ODA2QzMzOC4xMTYgOTcuNDgwNiAzMzguOTI2IDk4LjExMDYgMzM5LjkxNiA5OC4xMTA2SDM1MS45NzZDMzUyLjc4NiA5OC4xMTA2IDM1My4zMjYgOTcuMzAwNiAzNTMuMDU2IDk2LjU4MDZMMzMxLjE4NiAzNS44MzA2QzMzMC44MjYgMzQuOTMwNiAzMzAuMDE2IDM0LjM5MDYgMzI5LjExNiAzNC4zOTA2QzMyOC4yMTYgMzQuMzkwNiAzMjcuNDA2IDM0LjkzMDYgMzI3LjA0NiAzNS43NDA2TDMxMC43NTYgNzEuMDIwNloiIGZpbGw9ImJsYWNrIi8+DQo8cGF0aCBkPSJNMzk0Ljc4IDcxLjAyMDZMMzc4LjQ5IDM1Ljc0MDZDMzc4LjEzIDM0LjkzMDYgMzc3LjIzIDM0LjM5MDYgMzc2LjMzIDM0LjM5MDZDMzc1LjUyIDM0LjM5MDYgMzc0LjcxIDM0LjkzMDYgMzc0LjM1IDM1LjgzMDZMMzUyLjQ4IDk2LjU4MDZDMzUyLjIxIDk3LjMwMDYgMzUyLjc1IDk4LjExMDYgMzUzLjU2IDk4LjExMDZIMzY1LjYyQzM2Ni42MSA5OC4xMTA2IDM2Ny40MiA5Ny40ODA2IDM2Ny43OCA5Ni41ODA2TDM3OC4xMyA2NS4yNjA2TDM5Mi43MSA5Ny40ODA2QzM5My4wNyA5OC4yOTA2IDM5My44OCA5OC44MzA2IDM5NC43OCA5OC44MzA2QzM5NS42OCA5OC44MzA2IDM5Ni40OSA5OC4yOTA2IDM5Ni44NSA5Ny40ODA2TDQxMS40MyA2NS4yNjA2TDQyMS43OCA5Ni41ODA2QzQyMi4xNCA5Ny40ODA2IDQyMi45NSA5OC4xMTA2IDQyMy45NCA5OC4xMTA2SDQzNkM0MzYuODEgOTguMTEwNiA0MzcuMzUgOTcuMzAwNiA0MzcuMDggOTYuNTgwNkw0MTUuMjEgMzUuODMwNkM0MTQuODUgMzQuOTMwNiA0MTQuMDQgMzQuMzkwNiA0MTMuMTQgMzQuMzkwNkM0MTIuMjQgMzQuMzkwNiA0MTEuNDMgMzQuOTMwNiA0MTEuMDcgMzUuNzQwNkwzOTQuNzggNzEuMDIwNloiIGZpbGw9ImJsYWNrIi8+DQo8cGF0aCBkPSJNNDY4LjU0NSAzNS44MzA2QzQ2OC4xODUgMzQuOTMwNiA0NjcuMjg1IDM0LjM5MDYgNDY2LjM4NSAzNC4zOTA2QzQ2NS40ODUgMzQuMzkwNiA0NjQuNTg1IDM0LjkzMDYgNDY0LjIyNSAzNS44MzA2TDQzNi41OTUgOTYuNjcwNkM0MzYuMzI1IDk3LjMwMDYgNDM2Ljg2NSA5OC4xMTA2IDQzNy41ODUgOTguMTEwNkg0NTAuNDU1QzQ1MS40NDUgOTguMTEwNiA0NTIuMzQ1IDk3LjQ4MDYgNDUyLjcwNSA5Ni41ODA2TDQ1Ny4yMDUgODUuMzMwNkg0NzUuNzQ1TDQ4MC4yNDUgOTYuNTgwNkM0ODAuNjA1IDk3LjQ4MDYgNDgxLjUwNSA5OC4xMTA2IDQ4Mi40OTUgOTguMTEwNkg0OTUuMzY1QzQ5Ni4wODUgOTguMTEwNiA0OTYuNjI1IDk3LjMwMDYgNDk2LjI2NSA5Ni42NzA2TDQ2OC41NDUgMzUuODMwNlpNNDY2LjQ3NSA2Mi4zODA2TDQ3MS4xNTUgNzQuMDgwNkg0NjEuNzA1TDQ2Ni40NzUgNjIuMzgwNloiIGZpbGw9ImJsYWNrIi8+DQo8cGF0aCBkPSJNNTUxLjg2MSA2OS4zMTA2QzU1Mi41ODEgNjkuMzEwNiA1NTMuMTIxIDY4Ljc3MDYgNTUzLjEyMSA2OC4wNTA2VjY2LjA3MDZDNTUzLjEyMSA2NS4zNTA2IDU1Mi41ODEgNjQuODEwNiA1NTEuODYxIDY0LjgxMDZINTI2LjMwMVYzOS42MTA2SDU1OS4zMzFDNTYwLjA1MSAzOS42MTA2IDU2MC41OTEgMzkuMDcwNiA1NjAuNTkxIDM4LjM1MDZWMzYuMzcwNkM1NjAuNTkxIDM1LjY1MDYgNTYwLjA1MSAzNS4xMTA2IDU1OS4zMzEgMzUuMTEwNkg1MjEuODkxQzUyMS4xNzEgMzUuMTEwNiA1MjAuNjMxIDM1LjY1MDYgNTIwLjYzMSAzNi4zNzA2Vjk2Ljg1MDZDNTIwLjYzMSA5Ny41NzA2IDUyMS4xNzEgOTguMTEwNiA1MjEuODkxIDk4LjExMDZINTI1LjA0MUM1MjUuNzYxIDk4LjExMDYgNTI2LjMwMSA5Ny41NzA2IDUyNi4zMDEgOTYuODUwNlY2OS4zMTA2SDU1MS44NjFaIiBmaWxsPSJibGFjayIvPg0KPHBhdGggZD0iTTYwNy41MzIgOTYuODUwNkM2MDcuODAyIDk3LjU3MDYgNjA4LjUyMiA5OC4wMjA2IDYwOS4yNDIgOTguMDIwNkg2MTMuMTEyQzYxMy43NDIgOTguMDIwNiA2MTQuMTAyIDk3LjM5MDYgNjEzLjkyMiA5Ni44NTA2TDU4OC4yNzIgMzUuMDIwNkM1ODguMDAyIDM0LjU3MDYgNTg3LjU1MiAzNC4yMTA2IDU4Ny4wMTIgMzQuMjEwNkM1ODYuNDcyIDM0LjIxMDYgNTg1LjkzMiAzNC41NzA2IDU4NS43NTIgMzUuMDIwNkw1NjAuMTAyIDk2Ljg1MDZDNTU5LjkyMiA5Ny4zOTA2IDU2MC4yODIgOTguMDIwNiA1NjAuOTEyIDk4LjAyMDZINTY0Ljc4MkM1NjUuNTAyIDk4LjAyMDYgNTY2LjIyMiA5Ny41NzA2IDU2Ni40OTIgOTYuODUwNkw1NzMuMjQyIDgwLjAyMDZINjAwLjY5Mkw2MDcuNTMyIDk2Ljg1MDZaTTU4Ny4wMTIgNDYuMTgwNkw1OTguOTgyIDc1Ljg4MDZINTc0Ljk1Mkw1ODcuMDEyIDQ2LjE4MDZaIiBmaWxsPSJibGFjayIvPg0KPHBhdGggZD0iTTY3MC45NDggNDMuNDgwNkM2NzEuMzk4IDQzLjAzMDYgNjcxLjMwOCA0Mi4yMjA2IDY3MC43NjggNDEuNzcwNkM2NjUuMzY4IDM3LjA5MDYgNjU4Ljg4OCAzNC4xMjA2IDY0OS43MDggMzQuMTIwNkM2MjUuNjc4IDM0LjEyMDYgNjE4LjY1OCA1My4zODA2IDYxOC42NTggNjYuMjUwNkM2MTguNjU4IDc5Ljc1MDYgNjI1LjY3OCA5OC43NDA2IDY0OS43MDggOTguNzQwNkM2NTguNDM4IDk4Ljc0MDYgNjY1LjI3OCA5NS42ODA2IDY3MC41ODggOTEuNTQwNkM2NzEuMTI4IDkxLjA5MDYgNjcxLjIxOCA5MC4yODA2IDY3MC43NjggODkuNzQwNkw2NjkuMjM4IDg3LjY3MDZDNjY4Ljc4OCA4Ny4xMzA2IDY2Ny45NzggODcuMDQwNiA2NjcuNDM4IDg3LjQwMDZDNjYyLjg0OCA5MC43MzA2IDY1Ni41NDggOTMuNTIwNiA2NDkuNzA4IDkzLjUyMDZDNjI3LjU2OCA5My41MjA2IDYyNC41MDggNzMuMjcwNiA2MjQuNTA4IDY2LjI1MDZDNjI0LjUwOCA1OS41OTA2IDYyNy41NjggMzkuNDMwNiA2NDkuNzA4IDM5LjA3MDZDNjU2LjM2OCAzOC45ODA2IDY2Mi44NDggNDEuOTUwNiA2NjcuMzQ4IDQ1LjU1MDZDNjY3Ljg4OCA0Ni4wMDA2IDY2OC42OTggNDUuOTEwNiA2NjkuMTQ4IDQ1LjQ2MDZMNjcwLjk0OCA0My40ODA2WiIgZmlsbD0iYmxhY2siLz4NCjxwYXRoIGQ9Ik03MTcuMzUzIDY5LjMxMDZDNzE4LjA3MyA2OS4zMTA2IDcxOC42MTMgNjguNzcwNiA3MTguNjEzIDY4LjA1MDZWNjYuMDcwNkM3MTguNjEzIDY1LjM1MDYgNzE4LjA3MyA2NC44MTA2IDcxNy4zNTMgNjQuODEwNkg2OTEuNzkzVjM5LjYxMDZINzI0LjgyM0M3MjUuNTQzIDM5LjYxMDYgNzI2LjA4MyAzOS4wNzA2IDcyNi4wODMgMzguMzUwNlYzNi4zNzA2QzcyNi4wODMgMzUuNjUwNiA3MjUuNTQzIDM1LjExMDYgNzI0LjgyMyAzNS4xMTA2SDY4Ny4zODNDNjg2LjY2MyAzNS4xMTA2IDY4Ni4xMjMgMzUuNjUwNiA2ODYuMTIzIDM2LjM3MDZWOTYuODUwNkM2ODYuMTIzIDk3LjU3MDYgNjg2LjY2MyA5OC4xMTA2IDY4Ny4zODMgOTguMTEwNkg3MjQuODIzQzcyNS41NDMgOTguMTEwNiA3MjYuMDgzIDk3LjU3MDYgNzI2LjA4MyA5Ni44NTA2Vjk0Ljg3MDZDNzI2LjA4MyA5NC4xNTA2IDcyNS41NDMgOTMuNjEwNiA3MjQuODIzIDkzLjYxMDZINjkxLjc5M1Y2OS4zMTA2SDcxNy4zNTNaIiBmaWxsPSJibGFjayIvPg0KPHBhdGggZD0iTTc1NC44OTkgOTYuODUwNkM3NTQuODk5IDk3LjU3MDYgNzU1LjQzOSA5OC4xMTA2IDc1Ni4xNTkgOTguMTEwNkg3NTkuMzk5Qzc2MC4xMTkgOTguMTEwNiA3NjAuNjU5IDk3LjU3MDYgNzYwLjY1OSA5Ni44NTA2VjM5LjYxMDZINzc5LjEwOUM3NzkuODI5IDM5LjYxMDYgNzgwLjM2OSAzOS4wNzA2IDc4MC4zNjkgMzguMzUwNlYzNi4zNzA2Qzc4MC4zNjkgMzUuNjUwNiA3NzkuODI5IDM1LjExMDYgNzc5LjEwOSAzNS4xMTA2SDczNi43MTlDNzM1Ljk5OSAzNS4xMTA2IDczNS40NTkgMzUuNjUwNiA3MzUuNDU5IDM2LjM3MDZWMzguMzUwNkM3MzUuNDU5IDM5LjA3MDYgNzM1Ljk5OSAzOS42MTA2IDczNi43MTkgMzkuNjEwNkg3NTQuODk5Vjk2Ljg1MDZaIiBmaWxsPSJibGFjayIvPg0KPHBhdGggZmlsbC1ydWxlPSJldmVub2RkIiBjbGlwLXJ1bGU9ImV2ZW5vZGQiIGQ9Ik02MC4wNDg1IDQuNzkwNDJDNjEuMjgxMiA0LjEwMDM4IDYxLjcyMTEgMi41NDE2OSA2MS4wMzExIDEuMzA4OTdDNjAuMzQxMSAwLjA3NjI1MjggNTguNzgyNCAtMC4zNjM2NzcgNTcuNTQ5NyAwLjMyNjM1OUwzLjExOTM1IDMwLjc5NDdDMS41MDMyOSAzMS42OTkzIDAuNTAyMzMyIDMzLjQwNjggMC41MDIzMzIgMzUuMjU4OEwwLjUwMjMxOSA5OC44NzU0QzAuNTAyMzE5IDk5LjI4OTYgMC42MDA4MDUgOTkuNjgwOSAwLjc3NTY0MSAxMDAuMDI3QzAuNjUzNTIxIDEwMS4wMjEgMS4xMjUxMiAxMDIuMDM3IDIuMDQ5OTQgMTAyLjU2M0w1NC4zNyAxMzIuMzM1QzU3Ljc4MDUgMTM0LjI3NiA2Mi4wMTYgMTMxLjgxMyA2Mi4wMTYgMTI3Ljg4OUw2Mi4wMTYgNjMuODg0N0M2Mi4wMTYgNjIuNDcyIDYwLjg3MDggNjEuMzI2OCA1OS40NTgxIDYxLjMyNjhDNTguMDQ1NCA2MS4zMjY4IDU2LjkwMDIgNjIuNDcyIDU2LjkwMDIgNjMuODg0N1YxMjcuODg5TDMzLjU2NzUgMTE0LjYxMkwzMy41Njc1IDUxLjAwNjJMODguNjYzNCAyMC4xNTM4Qzg5Ljg5NiAxOS40NjM2IDkwLjMzNTcgMTcuOTA0OCA4OS42NDU0IDE2LjY3MjJDODguOTU1MiAxNS40Mzk2IDg3LjM5NjQgMTQuOTk5OSA4Ni4xNjM4IDE1LjY5MDJMMzEuMDY3OSA0Ni41NDI1QzI5LjQ1MjMgNDcuNDQ3MyAyOC40NTE2IDQ5LjE1NDUgMjguNDUxNiA1MS4wMDYyTDI4LjQ1MTYgMTExLjcwMUw1LjYxODE4IDk4LjcwNzZMNS42MTgxOSAzNS4yNTg4TDYwLjA0ODUgNC43OTA0MlpNMTEzLjg5IDEwNS4yMjJDMTEyLjQ3NyAxMDUuMjIyIDExMS4zMzIgMTA0LjA3NyAxMTEuMzMyIDEwMi42NjRMMTExLjMzMiAzMi4wNjgzQzExMS4zMzIgMzAuNjU1NiAxMTIuNDc3IDI5LjUxMDQgMTEzLjg5IDI5LjUxMDRDMTE1LjMwMiAyOS41MTA0IDExNi40NDggMzAuNjU1NiAxMTYuNDQ4IDMyLjA2ODNMMTE2LjQ0OCAxMDIuNjY0QzExNi40NDggMTA0LjA3NyAxMTUuMzAyIDEwNS4yMjIgMTEzLjg5IDEwNS4yMjJaTTg3LjAwMDkgMTIwLjI1NUM4NS41ODgyIDEyMC4yNTUgODQuNDQzIDExOS4xMSA4NC40NDMgMTE3LjY5N0w4NC40NDI5IDQ3Ljk3NjVDODQuNDQyOSA0Ni41NjM4IDg1LjU4ODIgNDUuNDE4NiA4Ny4wMDA5IDQ1LjQxODVDODguNDEzNiA0NS40MTg2IDg5LjU1ODggNDYuNTYzOCA4OS41NTg4IDQ3Ljk3NjVMODkuNTU4OCAxMTcuNjk3Qzg5LjU1ODggMTE5LjExIDg4LjQxMzYgMTIwLjI1NSA4Ny4wMDA5IDEyMC4yNTVaIiBmaWxsPSJ1cmwoI3BhaW50MF9saW5lYXIpIi8+DQo8ZGVmcz4NCjxsaW5lYXJHcmFkaWVudCBpZD0icGFpbnQwX2xpbmVhciIgeDE9IjAuNTAyMzEzIiB5MT0iMTEzLjIxMyIgeDI9IjEwMC44NjEiIHkyPSItNS4xNjY1MiIgZ3JhZGllbnRVbml0cz0idXNlclNwYWNlT25Vc2UiPg0KPHN0b3Agc3RvcC1jb2xvcj0iIzA3NUI1QSIvPg0KPHN0b3Agb2Zmc2V0PSIxIiBzdG9wLWNvbG9yPSIjNDBGQkExIi8+DQo8L2xpbmVhckdyYWRpZW50Pg0KPC9kZWZzPg0KPC9zdmc+DQo="
]
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"![Gamma_Facet_Logo_RGB_LB.svg](attachment:Gamma_Facet_Logo_RGB_LB.svg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n"
"<img src=\"../source/_static/Gamma_Facet_Logo_RGB_LB.svg\" width=\"500\" style=\"padding-bottom: 70px; padding-top: 70px; margin: auto; display: block\">"
]
},
{
Expand Down Expand Up @@ -579,21 +526,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "facet-develop",
"display_name": "Python 3",
"language": "python",
"name": "facet-develop"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
"name": "python3"
},
"toc": {
"base_numbering": 1,
Expand Down

0 comments on commit 7c78e1c

Please sign in to comment.