- Python==3.9
- CUDA==11.2
- numpy==1.23.1
- mxnet==1.9.1
- torch==2.3.0
- torchvision==0.18.0
- pytorch-lightning==1.7.1
- opencv-python==4.9.0.80
CONDA_ENV=dcface_synthetic_face
conda create -y --name $CONDA_ENV python=3.9
conda activate $CONDA_ENV
conda env config vars set CUDA_HOME="/usr/local/cuda-11.2"; conda deactivate; conda activate $CONDA_ENV
conda env config vars set LD_LIBRARY_PATH="$CUDA_HOME/lib64"; conda deactivate; conda activate $CONDA_ENV
conda env config vars set PATH="$CUDA_HOME:$CUDA_HOME/bin:$LD_LIBRARY_PATH:$PATH"; conda deactivate; conda activate $CONDA_ENV
cd ~
git clone https://github.com/BOVIFOCR/dcface_synthetic_face.git
cd dcface_synthetic_face
./install.sh
- If it fails, try to run
pip3 install -r requirements.txt
and download model weights from the link
cd dcface/stage1/unconditional_generation
python unconditional_sampling.py \
--attention_resolutions 16 \
--class_cond False \
--diffusion_steps 1000 \
--num_samples 16 \
--batch_size 8 \
--image_size 256 \
--learn_sigma True \
--noise_schedule linear \
--num_channels 128 \
--num_head_channels 64 \
--num_res_blocks 1 \
--resblock_updown True \
--use_fp16 False \
--use_scale_shift_norm True \
--timestep_respacing 100 \
--down_N 32 \
--range_t 20 \
--save_dir unconditional_samples
- 16 new images will be saved into the folder
dcface/stage1/unconditional_generation/unconditional_samples
cd dcface/src
python synthesis.py --id_images_root sample_images/id_images/sample_57.png --style_images_root sample_images/style_images/woman
- The image
sample_57.png
will be stylized from imagessample_5.png, sample_14.png, sample_20.png, sample_45.png, sample_63.png, sample_69.png
and saved into the folderdcface/generated_images/dcface_5x5/id:sample_57/sty:list_woman
- Download casia webface dataset from insightface
- Place it under
$DATA_ROOT
(ex:/data/
). - ex:
/data/faces_webface_112x112
- Place it under
- Download all pretrained weights from the link
- Place the
pretrained_models
directory underdcface
(same level assrc
)
cd dcface
bash src/scripts/train.sh
Official repository for the paper DCFace: Synthetic Face Generation with Dual Condition Diffusion Model (CVPR 2023).
- Arxiv: https://arxiv.org/abs/2304.07060
- Main paper: main.pdf
- Supplementary: supp.pdf
- one-liner :
install.sh
If above fails, then
pip install -r requirements.txt
# and download model weights from the link below
We provide the sample code to generate images with the pretrained weights. The sample aligned images are provided in the repository.
- Download the pretrained weights from the link
- Place the
pretrained_models
directory underdcface
(same level assrc
) - Run
cd dcface/src
python synthesis.py --id_images_root sample_images/id_images/sample_57.png --style_images_root sample_images/style_images/woman
One can also generate new subject images and prepare custom style images.
Unconditional ID image generation is done in dcface/stage1/unconditional_generation
Take a look at the README.md
in that directory for instructions on how to generate new ID images.
Any aligned images can serve as style images. We provive some sample images in sample_images/style_images
directory.
For anyone who wants to use their own style images, one should align the images first.
Take a look at the README.md
in dcface/stage1/style_bank
directory for instructions on how to align images.
Assuming that you followed 1. and 2. you will have an id_image
and style_images
directory.
For the sake of explaination, let's say
- ID image is
<Project_root>/dcface/stage1/unconditional_generation/unconditional_samples_aligned/00011.png
- Style directory is
<Project_root>/dcface/stage1/style_bank/style_images/raw_aligned
Then to combine these run by pointing at these paths,
cd dcface/src
python synthesis.py \
--id_images_root <Project_root>/dcface/stage1/unconditional_generation/unconditional_samples_aligned/00011.png \
--style_images_root <Project_root>/dcface/stage1/style_bank/style_images/raw_aligned
The result will be saved at <Project_root>/dcface/generated_images/
- Download casia webface dataset from insightface
- Place it under
$DATA_ROOT
(ex:/data/
). - ex:
/data/faces_webface_112x112
- Place it under
- Download all pretrained weights from the link
- Place the
pretrained_models
directory underdcface
(same level assrc
)
cd dcface
bash src/scripts/train.sh
DCFace synthetic dataset can be downloaded from link
The format of the downloaded file is in rec
format.
- you can convert it to
png
using the script. - rec file will be useful for the face recognition training script provided in the repository. (to be released soon)
cd dcface/convert
python record.py --rec_path <path_to_rec_file> --save_path <path_to_save_png>
# ex
# <path_to_rec_file> : dcface_0.5m_oversample_xid/record
# <path_to_save_png> : dcface_0.5m_oversample_xid/images
- to be released soon