This is the official code repository for the WACV 2024 paper "Group-wise Contrastive Bottleneck for Weakly-Supervised Visual Representation Learning".
conda create --name clrc python=3.9
conda activate clrc
conda install cupy cudatoolkit=11.1 -c conda-forge
pip install -r requirements.txt
pip install .
pip install ./SupContrast
The SupContrast
module is adapted from https://github.com/HobbitLong/SupContrast.
Note: Images are not included in this repository. Please refer to the links below to download the images.
Name | Link |
---|---|
UT Zappos 50k | https://vision.cs.utexas.edu/projects/finegrained/utzap50k/ |
WIDER Attribtue | http://mmlab.ie.cuhk.edu.hk/projects/WIDERAttribute.html |
CUB-200-2011 | https://www.vision.caltech.edu/datasets/cub_200_2011/ |
ImageNet-100 | https://image-net.org/download.php |
Fitzpatrick17k | https://github.com/mattgroh/fitzpatrick17k |
Configuration files for different datasets and pretrain methods can be found in the config/pretrain
folder. An example of pretraining on UT Zappos 50k:
python main_pretrain.py \
utzap-attribute \
clrc \
--config_file config/pretrain/utzap/clrc.json
Configuration files for different datasets can be found in the config/downstream
folder. An example of linear evaluation on UT Zappos 50k:
python main_finetune.py \
utzap \
classifier \
--backbone_weights model/pretrain/utzap/clrc/lightning_logs/version_0/checkpoints/epoch=999-step=272999.ckpt \
--config_file config/downstream/utzap.json
@InProceedings{Yap_2024_WACV,
author = {Yap, Boon Peng and Ng, Beng Koon},
title = {Group-Wise Contrastive Bottleneck for Weakly-Supervised Visual Representation Learning},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2024},
pages = {2246-2255}
}