-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added batch normalization layer with test and examples
- Loading branch information
1 parent
8c8e832
commit 2f05b03
Showing
10 changed files
with
1,284 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 | ||
# then another factor of 10 after 10 more epochs (5000 iters) | ||
|
||
# The train/test net protocol buffer definition | ||
net: "examples/cifar10/cifar10_full_sigmoid_train_test.prototxt" | ||
# test_iter specifies how many forward passes the test should carry out. | ||
# In the case of CIFAR10, we have test batch size 100 and 100 test iterations, | ||
# covering the full 10,000 testing images. | ||
test_iter: 10 | ||
# Carry out testing every 1000 training iterations. | ||
test_interval: 1000 | ||
# The base learning rate, momentum and the weight decay of the network. | ||
base_lr: 0.001 | ||
momentum: 0.9 | ||
#weight_decay: 0.004 | ||
# The learning rate policy | ||
lr_policy: "step" | ||
gamma: 1 | ||
stepsize: 5000 | ||
# Display every 200 iterations | ||
display: 100 | ||
# The maximum number of iterations | ||
max_iter: 60000 | ||
# snapshot intermediate results | ||
snapshot: 10000 | ||
snapshot_prefix: "examples/cifar10_full_sigmoid" | ||
# solver mode: CPU or GPU | ||
solver_mode: GPU |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 | ||
# then another factor of 10 after 10 more epochs (5000 iters) | ||
|
||
# The train/test net protocol buffer definition | ||
net: "examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt" | ||
# test_iter specifies how many forward passes the test should carry out. | ||
# In the case of CIFAR10, we have test batch size 100 and 100 test iterations, | ||
# covering the full 10,000 testing images. | ||
test_iter: 10 | ||
# Carry out testing every 1000 training iterations. | ||
test_interval: 1000 | ||
# The base learning rate, momentum and the weight decay of the network. | ||
base_lr: 0.001 | ||
momentum: 0.9 | ||
#weight_decay: 0.004 | ||
# The learning rate policy | ||
lr_policy: "step" | ||
gamma: 1 | ||
stepsize: 5000 | ||
# Display every 200 iterations | ||
display: 100 | ||
# The maximum number of iterations | ||
max_iter: 60000 | ||
# snapshot intermediate results | ||
snapshot: 10000 | ||
snapshot_prefix: "examples/cifar10_full_sigmoid_bn" | ||
# solver mode: CPU or GPU | ||
solver_mode: GPU |
212 changes: 212 additions & 0 deletions
212
examples/cifar10/cifar10_full_sigmoid_train_test.prototxt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
name: "CIFAR10_full" | ||
layer { | ||
name: "cifar" | ||
type: "Data" | ||
top: "data" | ||
top: "label" | ||
include { | ||
phase: TRAIN | ||
} | ||
transform_param { | ||
mean_file: "examples/cifar10/mean.binaryproto" | ||
} | ||
data_param { | ||
source: "examples/cifar10/cifar10_train_lmdb" | ||
batch_size: 111 | ||
backend: LMDB | ||
} | ||
} | ||
layer { | ||
name: "cifar" | ||
type: "Data" | ||
top: "data" | ||
top: "label" | ||
include { | ||
phase: TEST | ||
} | ||
transform_param { | ||
mean_file: "examples/cifar10/mean.binaryproto" | ||
} | ||
data_param { | ||
source: "examples/cifar10/cifar10_test_lmdb" | ||
batch_size: 1000 | ||
backend: LMDB | ||
} | ||
} | ||
layer { | ||
name: "conv1" | ||
type: "Convolution" | ||
bottom: "data" | ||
top: "conv1" | ||
param { | ||
lr_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
} | ||
convolution_param { | ||
num_output: 32 | ||
pad: 2 | ||
kernel_size: 5 | ||
stride: 1 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.0001 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
} | ||
} | ||
} | ||
layer { | ||
name: "pool1" | ||
type: "Pooling" | ||
bottom: "conv1" | ||
top: "pool1" | ||
pooling_param { | ||
pool: MAX | ||
kernel_size: 3 | ||
stride: 2 | ||
} | ||
} | ||
|
||
|
||
|
||
layer { | ||
name: "Sigmoid1" | ||
type: "Sigmoid" | ||
bottom: "pool1" | ||
top: "Sigmoid1" | ||
} | ||
|
||
layer { | ||
name: "conv2" | ||
type: "Convolution" | ||
bottom: "Sigmoid1" | ||
top: "conv2" | ||
param { | ||
lr_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
} | ||
convolution_param { | ||
num_output: 32 | ||
pad: 2 | ||
kernel_size: 5 | ||
stride: 1 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
} | ||
} | ||
} | ||
|
||
|
||
layer { | ||
name: "Sigmoid2" | ||
type: "Sigmoid" | ||
bottom: "conv2" | ||
top: "Sigmoid2" | ||
} | ||
layer { | ||
name: "pool2" | ||
type: "Pooling" | ||
bottom: "Sigmoid2" | ||
top: "pool2" | ||
pooling_param { | ||
pool: AVE | ||
kernel_size: 3 | ||
stride: 2 | ||
} | ||
} | ||
layer { | ||
name: "conv3" | ||
type: "Convolution" | ||
bottom: "pool2" | ||
top: "conv3" | ||
convolution_param { | ||
num_output: 64 | ||
pad: 2 | ||
kernel_size: 5 | ||
stride: 1 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
} | ||
} | ||
param { | ||
lr_mult: 1 | ||
} | ||
param { | ||
lr_mult: 1 | ||
} | ||
|
||
} | ||
|
||
layer { | ||
name: "Sigmoid3" | ||
type: "Sigmoid" | ||
bottom: "conv3" | ||
top: "Sigmoid3" | ||
} | ||
|
||
layer { | ||
name: "pool3" | ||
type: "Pooling" | ||
bottom: "Sigmoid3" | ||
top: "pool3" | ||
pooling_param { | ||
pool: AVE | ||
kernel_size: 3 | ||
stride: 2 | ||
} | ||
} | ||
|
||
layer { | ||
name: "ip1" | ||
type: "InnerProduct" | ||
bottom: "pool3" | ||
top: "ip1" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 250 | ||
} | ||
param { | ||
lr_mult: 0.2 | ||
decay_mult: 0 | ||
} | ||
inner_product_param { | ||
num_output: 10 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
} | ||
} | ||
} | ||
layer { | ||
name: "accuracy" | ||
type: "Accuracy" | ||
bottom: "ip1" | ||
bottom: "label" | ||
top: "accuracy" | ||
include { | ||
phase: TEST | ||
} | ||
} | ||
layer { | ||
name: "loss" | ||
type: "SoftmaxWithLoss" | ||
bottom: "ip1" | ||
bottom: "label" | ||
top: "loss" | ||
} |
Oops, something went wrong.