Skip to content

Commit

Permalink
add DeconvolutionLayer, using BaseConvolutionLayer
Browse files Browse the repository at this point in the history
  • Loading branch information
longjon committed Jan 11, 2015
1 parent e3e2f2d commit 3617352
Show file tree
Hide file tree
Showing 4 changed files with 178 additions and 1 deletion.
20 changes: 20 additions & 0 deletions include/caffe/vision_layers.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -171,8 +171,28 @@ class ConvolutionLayer : public BaseConvolutionLayer<Dtype> {
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual inline bool reverse_dimensions() { return false; }
virtual void compute_output_shape();
};

template <typename Dtype>
class DeconvolutionLayer : public BaseConvolutionLayer<Dtype> {
public:
explicit DeconvolutionLayer(const LayerParameter& param)
: BaseConvolutionLayer<Dtype>(param) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_DECONVOLUTION;
}

protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual inline bool reverse_dimensions() { return true; }
virtual void compute_output_shape();
};

#ifdef USE_CUDNN
Expand Down
85 changes: 85 additions & 0 deletions src/caffe/layers/deconv_layer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
#include <vector>

#include "caffe/filler.hpp"
#include "caffe/layer.hpp"
#include "caffe/util/im2col.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/vision_layers.hpp"

namespace caffe {

template <typename Dtype>
void DeconvolutionLayer<Dtype>::compute_output_shape() {
this->height_out_ = this->stride_h_ * (this->height_ - 1) + this->kernel_h_
- 2 * this->pad_h_;
this->width_out_ = this->stride_w_ * (this->width_ - 1) + this->kernel_w_
- 2 * this->pad_w_;
}

template <typename Dtype>
void DeconvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[0]->cpu_data();
for (int i = 0; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = 0; n < this->num_; ++n) {
this->backward_cpu_gemm(bottom_data + bottom[i]->offset(n), weight,
top_data + top[i]->offset(n));
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->cpu_data();
this->forward_cpu_bias(top_data + top[i]->offset(n), bias);
}
}
}
}

template <typename Dtype>
void DeconvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[0]->cpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
if (this->param_propagate_down_[0]) {
caffe_set(this->blobs_[0]->count(), Dtype(0), weight_diff);
}
if (this->bias_term_ && this->param_propagate_down_[1]) {
caffe_set(this->blobs_[1]->count(), Dtype(0),
this->blobs_[1]->mutable_cpu_diff());
}
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();
// Bias gradient, if necessary.
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
for (int n = 0; n < this->num_; ++n) {
this->backward_cpu_bias(bias_diff, top_diff + top[i]->offset(n));
}
}
if (this->param_propagate_down_[0] || propagate_down[i]) {
for (int n = 0; n < this->num_; ++n) {
// Gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[0]) {
this->weight_cpu_gemm(top_diff + top[i]->offset(n),
bottom_data + bottom[i]->offset(n), weight_diff);
}
// Gradient w.r.t. bottom data, if necessary, reusing the column buffer
// we might have just computed above.
if (propagate_down[i]) {
this->forward_cpu_gemm(top_diff + top[i]->offset(n), weight,
bottom_diff + bottom[i]->offset(n),
this->param_propagate_down_[0]);
}
}
}
}
}

#ifdef CPU_ONLY
STUB_GPU(DeconvolutionLayer);
#endif

INSTANTIATE_CLASS(DeconvolutionLayer);
REGISTER_LAYER_CLASS(DECONVOLUTION, DeconvolutionLayer);
} // namespace caffe
71 changes: 71 additions & 0 deletions src/caffe/layers/deconv_layer.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
#include <vector>

#include "caffe/filler.hpp"
#include "caffe/layer.hpp"
#include "caffe/util/im2col.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/vision_layers.hpp"

namespace caffe {

template <typename Dtype>
void DeconvolutionLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[0]->gpu_data();
for (int i = 0; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->gpu_data();
Dtype* top_data = top[i]->mutable_gpu_data();
for (int n = 0; n < this->num_; ++n) {
this->backward_gpu_gemm(bottom_data + bottom[i]->offset(n), weight,
top_data + top[i]->offset(n));
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->gpu_data();
this->forward_gpu_bias(top_data + top[i]->offset(n), bias);
}
}
}
}

template <typename Dtype>
void DeconvolutionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[0]->gpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_gpu_diff();
if (this->param_propagate_down_[0]) {
caffe_gpu_set(this->blobs_[0]->count(), Dtype(0), weight_diff);
}
if (this->bias_term_ && this->param_propagate_down_[1]) {
caffe_gpu_set(this->blobs_[1]->count(), Dtype(0),
this->blobs_[1]->mutable_gpu_diff());
}
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->gpu_diff();
const Dtype* bottom_data = bottom[i]->gpu_data();
Dtype* bottom_diff = bottom[i]->mutable_gpu_diff();
// Bias gradient, if necessary.
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_gpu_diff();
for (int n = 0; n < this->num_; ++n) {
this->backward_gpu_bias(bias_diff, top_diff + top[i]->offset(n));
}
}
if (this->param_propagate_down_[0] || propagate_down[i]) {
for (int n = 0; n < this->num_; ++n) {
// gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[0]) {
this->weight_gpu_gemm(top_diff + top[i]->offset(n),
bottom_data + bottom[i]->offset(n), weight_diff);
}
// gradient w.r.t. bottom data, if necessary.
if (propagate_down[i]) {
this->forward_gpu_gemm(top_diff + top[i]->offset(n), weight,
bottom_diff + bottom[i]->offset(n));
}
}
}
}
}

INSTANTIATE_LAYER_GPU_FUNCS(DeconvolutionLayer);

} // namespace caffe
3 changes: 2 additions & 1 deletion src/caffe/proto/caffe.proto
Original file line number Diff line number Diff line change
Expand Up @@ -227,7 +227,7 @@ message LayerParameter {
// line above the enum. Update the next available ID when you add a new
// LayerType.
//
// LayerType next available ID: 39 (last added: EXP)
// LayerType next available ID: 40 (last added: DECONVOLUTION)
enum LayerType {
// "NONE" layer type is 0th enum element so that we don't cause confusion
// by defaulting to an existent LayerType (instead, should usually error if
Expand All @@ -241,6 +241,7 @@ message LayerParameter {
CONTRASTIVE_LOSS = 37;
CONVOLUTION = 4;
DATA = 5;
DECONVOLUTION = 39;
DROPOUT = 6;
DUMMY_DATA = 32;
EUCLIDEAN_LOSS = 7;
Expand Down

0 comments on commit 3617352

Please sign in to comment.