Skip to content

Commit

Permalink
Merge pull request #2076 from jeffdonahue/accuracy-layer-fixes
Browse files Browse the repository at this point in the history
Fixup AccuracyLayer like SoftmaxLossLayer in #1970
  • Loading branch information
jeffdonahue committed Mar 9, 2015
2 parents d9ed0b9 + 2abbaca commit 77ab8f6
Show file tree
Hide file tree
Showing 4 changed files with 154 additions and 28 deletions.
7 changes: 7 additions & 0 deletions include/caffe/loss_layers.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,14 @@ class AccuracyLayer : public Layer<Dtype> {
}
}

int label_axis_, outer_num_, inner_num_;

int top_k_;

/// Whether to ignore instances with a certain label.
bool has_ignore_label_;
/// The label indicating that an instance should be ignored.
int ignore_label_;
};

/**
Expand Down
67 changes: 44 additions & 23 deletions src/caffe/layers/accuracy_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,18 +14,28 @@ template <typename Dtype>
void AccuracyLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
top_k_ = this->layer_param_.accuracy_param().top_k();

has_ignore_label_ =
this->layer_param_.accuracy_param().has_ignore_label();
if (has_ignore_label_) {
ignore_label_ = this->layer_param_.accuracy_param().ignore_label();
}
}

template <typename Dtype>
void AccuracyLayer<Dtype>::Reshape(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
CHECK_LE(top_k_, bottom[0]->count() / bottom[1]->count())
<< "top_k must be less than or equal to the number of classes.";
CHECK_GE(bottom[0]->num_axes(), bottom[1]->num_axes());
for (int i = 0; i < bottom[1]->num_axes(); ++i) {
CHECK_LE(bottom[0]->shape(i), bottom[1]->shape(i))
<< "Dimension mismatch between predictions and label.";
}
label_axis_ =
bottom[0]->CanonicalAxisIndex(this->layer_param_.accuracy_param().axis());
outer_num_ = bottom[0]->count(0, label_axis_);
inner_num_ = bottom[0]->count(label_axis_ + 1);
CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
<< "Number of labels must match number of predictions; "
<< "e.g., if label axis == 1 and prediction shape is (N, C, H, W), "
<< "label count (number of labels) must be N*H*W, "
<< "with integer values in {0, 1, ..., C-1}.";
vector<int> top_shape(0); // Accuracy is a scalar; 0 axes.
top[0]->Reshape(top_shape);
}
Expand All @@ -36,31 +46,42 @@ void AccuracyLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
Dtype accuracy = 0;
const Dtype* bottom_data = bottom[0]->cpu_data();
const Dtype* bottom_label = bottom[1]->cpu_data();
int num = bottom[0]->count(0, bottom[1]->num_axes());
int dim = bottom[0]->count() / num;
const int dim = bottom[0]->count() / outer_num_;
const int num_labels = bottom[0]->shape(label_axis_);
vector<Dtype> maxval(top_k_+1);
vector<int> max_id(top_k_+1);
for (int i = 0; i < num; ++i) {
// Top-k accuracy
std::vector<std::pair<Dtype, int> > bottom_data_vector;
for (int j = 0; j < dim; ++j) {
bottom_data_vector.push_back(
std::make_pair(bottom_data[i * dim + j], j));
}
std::partial_sort(
bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_,
bottom_data_vector.end(), std::greater<std::pair<Dtype, int> >());
// check if true label is in top k predictions
for (int k = 0; k < top_k_; k++) {
if (bottom_data_vector[k].second == static_cast<int>(bottom_label[i])) {
++accuracy;
break;
int count = 0;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
const int label_value =
static_cast<int>(bottom_label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
continue;
}
DCHECK_GE(label_value, 0);
DCHECK_LT(label_value, num_labels);
// Top-k accuracy
std::vector<std::pair<Dtype, int> > bottom_data_vector;
for (int k = 0; k < num_labels; ++k) {
bottom_data_vector.push_back(std::make_pair(
bottom_data[i * dim + k * inner_num_ + j], k));
}
std::partial_sort(
bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_,
bottom_data_vector.end(), std::greater<std::pair<Dtype, int> >());
// check if true label is in top k predictions
for (int k = 0; k < top_k_; k++) {
if (bottom_data_vector[k].second == label_value) {
++accuracy;
break;
}
}
++count;
}
}

// LOG(INFO) << "Accuracy: " << accuracy;
top[0]->mutable_cpu_data()[0] = accuracy / num;
top[0]->mutable_cpu_data()[0] = accuracy / count;
// Accuracy layer should not be used as a loss function.
}

Expand Down
10 changes: 10 additions & 0 deletions src/caffe/proto/caffe.proto
Original file line number Diff line number Diff line change
Expand Up @@ -367,6 +367,16 @@ message AccuracyParameter {
// the top k scoring classes. By default, only compare to the top scoring
// class (i.e. argmax).
optional uint32 top_k = 1 [default = 1];

// The "label" axis of the prediction blob, whose argmax corresponds to the
// predicted label -- may be negative to index from the end (e.g., -1 for the
// last axis). For example, if axis == 1 and the predictions are
// (N x C x H x W), the label blob is expected to contain N*H*W ground truth
// labels with integer values in {0, 1, ..., C-1}.
optional int32 axis = 2 [default = 1];

// If specified, ignore instances with the given label.
optional int32 ignore_label = 3;
}

// Message that stores parameters used by ArgMaxLayer
Expand Down
98 changes: 93 additions & 5 deletions src/caffe/test/test_accuracy_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,14 @@ class AccuracyLayerTest : public ::testing::Test {
blob_bottom_data_->Reshape(shape);
shape.resize(1);
blob_bottom_label_->Reshape(shape);
FillBottoms();

blob_bottom_vec_.push_back(blob_bottom_data_);
blob_bottom_vec_.push_back(blob_bottom_label_);
blob_top_vec_.push_back(blob_top_);
}

virtual void FillBottoms() {
// fill the probability values
FillerParameter filler_param;
GaussianFiller<Dtype> filler(filler_param);
Expand All @@ -39,14 +47,11 @@ class AccuracyLayerTest : public ::testing::Test {
caffe::rng_t* prefetch_rng =
static_cast<caffe::rng_t*>(rng->generator());
Dtype* label_data = blob_bottom_label_->mutable_cpu_data();
for (int i = 0; i < 100; ++i) {
for (int i = 0; i < blob_bottom_label_->count(); ++i) {
label_data[i] = (*prefetch_rng)() % 10;
}

blob_bottom_vec_.push_back(blob_bottom_data_);
blob_bottom_vec_.push_back(blob_bottom_label_);
blob_top_vec_.push_back(blob_top_);
}

virtual ~AccuracyLayerTest() {
delete blob_bottom_data_;
delete blob_bottom_label_;
Expand Down Expand Up @@ -112,6 +117,89 @@ TYPED_TEST(AccuracyLayerTest, TestForwardCPU) {
num_correct_labels / 100.0, 1e-4);
}

TYPED_TEST(AccuracyLayerTest, TestForwardWithSpatialAxes) {
Caffe::set_mode(Caffe::CPU);
this->blob_bottom_data_->Reshape(2, 10, 4, 5);
vector<int> label_shape(3);
label_shape[0] = 2; label_shape[1] = 4; label_shape[2] = 5;
this->blob_bottom_label_->Reshape(label_shape);
this->FillBottoms();
LayerParameter layer_param;
layer_param.mutable_accuracy_param()->set_axis(1);
AccuracyLayer<TypeParam> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);

TypeParam max_value;
const int num_labels = this->blob_bottom_label_->count();
int max_id;
int num_correct_labels = 0;
vector<int> label_offset(3);
for (int n = 0; n < this->blob_bottom_data_->num(); ++n) {
for (int h = 0; h < this->blob_bottom_data_->height(); ++h) {
for (int w = 0; w < this->blob_bottom_data_->width(); ++w) {
max_value = -FLT_MAX;
max_id = 0;
for (int c = 0; c < this->blob_bottom_data_->channels(); ++c) {
const TypeParam pred_value =
this->blob_bottom_data_->data_at(n, c, h, w);
if (pred_value > max_value) {
max_value = pred_value;
max_id = c;
}
}
label_offset[0] = n; label_offset[1] = h; label_offset[2] = w;
const int correct_label =
static_cast<int>(this->blob_bottom_label_->data_at(label_offset));
if (max_id == correct_label) {
++num_correct_labels;
}
}
}
}
EXPECT_NEAR(this->blob_top_->data_at(0, 0, 0, 0),
num_correct_labels / TypeParam(num_labels), 1e-4);
}

TYPED_TEST(AccuracyLayerTest, TestForwardIgnoreLabel) {
Caffe::set_mode(Caffe::CPU);
LayerParameter layer_param;
const TypeParam kIgnoreLabelValue = -1;
layer_param.mutable_accuracy_param()->set_ignore_label(kIgnoreLabelValue);
AccuracyLayer<TypeParam> layer(layer_param);
// Manually set some labels to the ignore label value (-1).
this->blob_bottom_label_->mutable_cpu_data()[2] = kIgnoreLabelValue;
this->blob_bottom_label_->mutable_cpu_data()[5] = kIgnoreLabelValue;
this->blob_bottom_label_->mutable_cpu_data()[32] = kIgnoreLabelValue;
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);

TypeParam max_value;
int max_id;
int num_correct_labels = 0;
int count = 0;
for (int i = 0; i < 100; ++i) {
if (kIgnoreLabelValue == this->blob_bottom_label_->data_at(i, 0, 0, 0)) {
continue;
}
++count;
max_value = -FLT_MAX;
max_id = 0;
for (int j = 0; j < 10; ++j) {
if (this->blob_bottom_data_->data_at(i, j, 0, 0) > max_value) {
max_value = this->blob_bottom_data_->data_at(i, j, 0, 0);
max_id = j;
}
}
if (max_id == this->blob_bottom_label_->data_at(i, 0, 0, 0)) {
++num_correct_labels;
}
}
EXPECT_EQ(count, 97); // We set 3 out of 100 labels to kIgnoreLabelValue.
EXPECT_NEAR(this->blob_top_->data_at(0, 0, 0, 0),
num_correct_labels / TypeParam(count), 1e-4);
}

TYPED_TEST(AccuracyLayerTest, TestForwardCPUTopK) {
LayerParameter layer_param;
AccuracyParameter* accuracy_param = layer_param.mutable_accuracy_param();
Expand Down

0 comments on commit 77ab8f6

Please sign in to comment.