-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Prototxts + script for training COCO caption language model
- Loading branch information
1 parent
33f5d74
commit 8d78878
Showing
3 changed files
with
184 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
name: "lstm_language_model" | ||
layer { | ||
name: "data" | ||
type: "HDF5Data" | ||
top: "cont_sentence" | ||
top: "input_sentence" | ||
top: "target_sentence" | ||
include { phase: TRAIN } | ||
hdf5_data_param { | ||
source: "./examples/coco_caption/h5_data/buffer_100/train_unaligned_batches/hdf5_chunk_list.txt" | ||
batch_size: 20 | ||
} | ||
} | ||
layer { | ||
name: "data" | ||
type: "HDF5Data" | ||
top: "cont_sentence" | ||
top: "input_sentence" | ||
top: "target_sentence" | ||
include { | ||
phase: TEST | ||
stage: "test-on-train" | ||
} | ||
hdf5_data_param { | ||
source: "./examples/coco_caption/h5_data/buffer_100/train_unaligned_batches/hdf5_chunk_list.txt" | ||
batch_size: 20 | ||
} | ||
} | ||
layer { | ||
name: "data" | ||
type: "HDF5Data" | ||
top: "cont_sentence" | ||
top: "input_sentence" | ||
top: "target_sentence" | ||
include { | ||
phase: TEST | ||
stage: "test-on-val" | ||
} | ||
hdf5_data_param { | ||
source: "./examples/coco_caption/h5_data/buffer_100/val_unaligned_batches/hdf5_chunk_list.txt" | ||
batch_size: 20 | ||
} | ||
} | ||
layer { | ||
name: "embedding" | ||
type: "Embed" | ||
bottom: "input_sentence" | ||
top: "embedded_input_sentence" | ||
param { | ||
lr_mult: 1 | ||
} | ||
embed_param { | ||
bias_term: false | ||
input_dim: 8801 # = vocab_size + 1 (for EOS) | ||
num_output: 1000 | ||
weight_filler { | ||
type: "uniform" | ||
min: -0.08 | ||
max: 0.08 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "embed-drop" | ||
type: "Dropout" | ||
bottom: "embedded_input_sentence" | ||
top: "embedded_input_sentence" | ||
dropout_param { dropout_ratio: 0.5 } | ||
include { stage: "embed-drop" } | ||
} | ||
layer { | ||
name: "lstm1" | ||
type: "LSTM" | ||
bottom: "embedded_input_sentence" | ||
bottom: "cont_sentence" | ||
top: "lstm1" | ||
recurrent_param { | ||
num_output: 1000 | ||
weight_filler { | ||
type: "uniform" | ||
min: -0.08 | ||
max: 0.08 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "lstm-drop" | ||
type: "Dropout" | ||
bottom: "lstm1" | ||
top: "lstm1" | ||
dropout_param { dropout_ratio: 0.5 } | ||
include { stage: "lstm-drop" } | ||
} | ||
layer { | ||
name: "predict" | ||
type: "InnerProduct" | ||
bottom: "lstm1" | ||
top: "predict" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
decay_mult: 0 | ||
} | ||
inner_product_param { | ||
num_output: 8801 # = vocab_size + 1 (+1 for EOS) | ||
weight_filler { | ||
type: "uniform" | ||
min: -0.08 | ||
max: 0.08 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0 | ||
} | ||
axis: 2 | ||
} | ||
} | ||
layer { | ||
name: "cross_entropy_loss" | ||
type: "SoftmaxWithLoss" | ||
bottom: "predict" | ||
bottom: "target_sentence" | ||
top: "cross_entropy_loss" | ||
loss_weight: 20 | ||
loss_param { | ||
ignore_label: -1 | ||
} | ||
softmax_param { | ||
axis: 2 | ||
} | ||
} | ||
layer { | ||
name: "accuracy" | ||
type: "Accuracy" | ||
bottom: "predict" | ||
bottom: "target_sentence" | ||
top: "accuracy" | ||
include { phase: TEST } | ||
loss_param { | ||
ignore_label: -1 | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
net: "./examples/coco_caption/lstm_language_model.prototxt" | ||
train_state: { stage: 'embed-drop' stage: 'lstm-drop' } | ||
test_iter: 25 | ||
test_state: { stage: 'test-on-train' } | ||
test_iter: 25 | ||
test_state: { stage: 'test-on-val' } | ||
test_interval: 100 | ||
base_lr: 0.1 | ||
lr_policy: "step" | ||
gamma: 0.5 | ||
stepsize: 20000 | ||
display: 1 | ||
max_iter: 110000 | ||
momentum: 0.9 | ||
weight_decay: 0.0000 | ||
snapshot: 5000 | ||
snapshot_prefix: "./examples/coco_caption/lstm_lm" | ||
solver_mode: GPU | ||
random_seed: 1701 | ||
average_loss: 100 | ||
clip_gradients: 10 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
#!/usr/bin/env bash | ||
|
||
GPU_ID=0 | ||
DATA_DIR=./examples/coco_caption/h5_data/ | ||
if [ ! -d $DATA_DIR ]; then | ||
echo "Data directory not found: $DATA_DIR" | ||
echo "First, download the COCO dataset (follow instructions in data/coco)" | ||
echo "Then, run ./examples/coco_caption/coco_to_hdf5_data.py to create the Caffe input data" | ||
exit 1 | ||
fi | ||
|
||
./build/tools/caffe train \ | ||
-solver ./examples/coco_caption/lstm_lm_solver.prototxt \ | ||
-gpu $GPU_ID |