-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
54 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
from caffe import layers as L, params as P, to_proto | ||
from caffe.proto import caffe_pb2 | ||
|
||
# helper function for common structures | ||
|
||
def conv_relu(bottom, ks, nout, stride=1, pad=0, group=1): | ||
conv = L.Convolution(bottom, kernel_size=ks, stride=stride, | ||
num_output=nout, pad=pad, group=group) | ||
return conv, L.ReLU(conv, in_place=True) | ||
|
||
def fc_relu(bottom, nout): | ||
fc = L.InnerProduct(bottom, num_output=nout) | ||
return fc, L.ReLU(fc, in_place=True) | ||
|
||
def max_pool(bottom, ks, stride=1): | ||
return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride) | ||
|
||
def alexnet(lmdb, batch_size=256, include_acc=False): | ||
data, label = L.Data(source=lmdb, backend=P.Data.LMDB, batch_size=batch_size, ntop=2, | ||
transform_param=dict(crop_size=227, mean_value=[104, 117, 123], mirror=True)) | ||
|
||
# the net itself | ||
conv1, relu1 = conv_relu(data, 11, 96, stride=4) | ||
pool1 = max_pool(relu1, 3, stride=2) | ||
norm1 = L.LRN(pool1, local_size=5, alpha=1e-4, beta=0.75) | ||
conv2, relu2 = conv_relu(norm1, 5, 256, pad=2, group=2) | ||
pool2 = max_pool(relu2, 3, stride=2) | ||
norm2 = L.LRN(pool2, local_size=5, alpha=1e-4, beta=0.75) | ||
conv3, relu3 = conv_relu(norm2, 3, 384, pad=1) | ||
conv4, relu4 = conv_relu(relu3, 3, 384, pad=1, group=2) | ||
conv5, relu5 = conv_relu(relu4, 3, 256, pad=1, group=2) | ||
pool5 = max_pool(relu5, 3, stride=2) | ||
fc6, relu6 = fc_relu(pool5, 4096) | ||
drop6 = L.Dropout(relu6, in_place=True) | ||
fc7, relu7 = fc_relu(drop6, 4096) | ||
drop7 = L.Dropout(relu7, in_place=True) | ||
fc8 = L.InnerProduct(drop7, num_output=1000) | ||
loss = L.SoftmaxWithLoss(fc8, label) | ||
|
||
if include_acc: | ||
acc = L.Accuracy(fc8, label) | ||
return to_proto((loss, acc), {v: k for k, v in locals().iteritems()}) | ||
else: | ||
return to_proto(loss, {v: k for k, v in locals().iteritems()}) | ||
|
||
def make_net(): | ||
with open('train.prototxt', 'w') as f: | ||
print >>f, alexnet('/path/to/caffe-train-lmdb') | ||
|
||
with open('test.prototxt', 'w') as f: | ||
print >>f, alexnet('/path/to/caffe-val-lmdb', batch_size=50, include_acc=True) | ||
|
||
if __name__ == '__main__': | ||
make_net() |