-
Notifications
You must be signed in to change notification settings - Fork 71
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
236 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
import sys | ||
|
||
sys.path.append("../../..") | ||
import bmf | ||
from bmf import Log, LogLevel | ||
import os | ||
|
||
def main(): | ||
graph = bmf.graph({"dump_graph": 1}) | ||
|
||
openvino_face_detect = bmf.create_module('openvino_face_detect', { | ||
"model_path": "../../models/version-RFB-640.onnx", | ||
"label_to_frame": 1, | ||
"threads": 2 | ||
}) | ||
video_stream = graph.decode({'input_path': "../../files/face.mp4"}) | ||
#video_stream = graph.download({ | ||
# 'input_url': 'https://github.com/fromwhzz/test_video/raw/master/face.mp4', | ||
# 'local_path': '../../files/face_test.mp4' | ||
#}).decode() | ||
detect_stream = video_stream['video'].module('openvino_face_detect', | ||
pre_module=openvino_face_detect) | ||
detect_stream[0].encode(None, {"output_path": "../../files/out.mp4"}).run() | ||
|
||
|
||
if __name__ == '__main__': | ||
pid = os.getpid() | ||
core_list = [0, 1]#if use multi openvino process, it's best to bind the core to avoid preemption of CPU resources. | ||
os.sched_setaffinity(pid, core_list) | ||
Log.set_log_level(LogLevel.ERROR) | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
import openvino.runtime as ov | ||
import numpy as np | ||
import bmf.hml.hmp as mp | ||
import time | ||
import sys | ||
if sys.version_info.major == 2: | ||
from Queue import Queue | ||
else: | ||
from queue import Queue | ||
|
||
from PIL import Image | ||
from bmf import Module, Log, LogLevel, InputType, ProcessResult, Packet, Timestamp, scale_av_pts, av_time_base, \ | ||
BmfCallBackType, VideoFrame, AudioFrame | ||
from nms import NMS | ||
import threading | ||
|
||
|
||
class openvino_face_detect(Module): | ||
|
||
def __init__(self, node=None, option=None): | ||
self.node_ = node | ||
self.option_ = option | ||
|
||
if option is None: | ||
Log.log(LogLevel.ERROR, "Option is none") | ||
return | ||
|
||
# model path | ||
if 'model_path' in option.keys(): | ||
self.model_path_ = option['model_path'] | ||
|
||
if 'label_to_frame' in option.keys(): | ||
self.label_frame_flag_ = option['label_to_frame'] | ||
|
||
if 'threads' in option.keys(): | ||
self.ov_threads_ = option['threads'] | ||
|
||
start_time = time.time() | ||
|
||
# load model | ||
core = ov.Core() | ||
config = {'PERFORMANCE_HINT': 'LATENCY', 'INFERENCE_NUM_THREADS': self.ov_threads_} | ||
compiled_model = core.compile_model(self.model_path_, "CPU", config) | ||
self.infer_request = compiled_model.create_infer_request() | ||
|
||
self.input_shapes_ = [] | ||
for input in compiled_model.inputs: | ||
self.input_shapes_.append(list(input.shape)) | ||
|
||
# batch frame cache | ||
self.frame_cache_ = Queue() | ||
|
||
self.in_frame_num_ = 1 | ||
self.out_frame_num_ = 1 | ||
|
||
self.eof_received_ = False | ||
|
||
Log.log(LogLevel.ERROR, "Load model takes", (time.time() - start_time)) | ||
|
||
def reset(self): | ||
# clear status | ||
self.eof_received_ = False | ||
while not self.frame_cache_.empty(): | ||
self.frame_cache_.get() | ||
|
||
def pre_process(self, image_list): | ||
|
||
image_size = (self.input_shapes_[0][3], self.input_shapes_[0][2]) | ||
pre_result = None | ||
for image in image_list: | ||
img = image.resize(image_size, Image.BILINEAR) | ||
img_data = np.array(img) | ||
img_data = np.transpose(img_data, [2, 0, 1]) | ||
img_data = np.expand_dims(img_data, 0) | ||
mean_vec = np.array([0.5, 0.5, 0.5]) | ||
stddev_vec = np.array([0.5, 0.5, 0.5]) | ||
norm_img_data = np.zeros(img_data.shape).astype('float32') | ||
for i in range(img_data.shape[1]): | ||
norm_img_data[:, i, :, :] = (img_data[:, i, :, :] / 255 - | ||
mean_vec[i]) / stddev_vec[i] | ||
if pre_result == None: | ||
pre_result = norm_img_data | ||
else: | ||
pre_result = np.concatenate((pre_result, norm_img_data), | ||
axis=0) | ||
return pre_result | ||
|
||
# transform the onnx reslt to detect result object | ||
def post_process(self, input_pil_arrays, boxes, scores): | ||
output_list = [] | ||
boxes_data = [] | ||
scores_data = [] | ||
for image_id in range(len(input_pil_arrays)): | ||
|
||
image = input_pil_arrays[image_id] | ||
output_data = [] | ||
for index in range(len(boxes[image_id])): | ||
if (scores[image_id][index][1]) > 0.8: | ||
box = (boxes[image_id][index]) | ||
x1 = int(box[0] * image.size[0]) | ||
y1 = int(box[1] * image.size[1]) | ||
x2 = int(box[2] * image.size[0]) | ||
y2 = int(box[3] * image.size[1]) | ||
boxes_data.append([x1, y1, x2, y2]) | ||
scores_data.append(scores[image_id][index][1]) | ||
|
||
nms_boxes, nms_scores = NMS(boxes_data, scores_data) | ||
output_list.append(nms_boxes) | ||
return output_list | ||
|
||
def label_frame(self, input_frames, input_pil_arrays, detect_result_list): | ||
from PIL import ImageDraw | ||
output_frame_list = [] | ||
for index_frame in range(len(input_pil_arrays)): | ||
image = input_pil_arrays[index_frame] | ||
draw = ImageDraw.Draw(image) | ||
for index_box in range(len(detect_result_list[index_frame])): | ||
detect_result = detect_result_list[index_frame][index_box] | ||
draw.rectangle([ | ||
detect_result[0], detect_result[1], detect_result[2], | ||
detect_result[3] | ||
]) | ||
del draw | ||
|
||
img = np.asarray(image) | ||
H420 = mp.PixelInfo(mp.kPF_YUV420P) | ||
rgb = mp.PixelInfo(mp.kPF_RGB24) | ||
|
||
frame = mp.Frame(mp.from_numpy(img), rgb) | ||
output_frame = VideoFrame(frame).reformat(H420) | ||
output_frame.pts = input_frames[index_frame].pts | ||
output_frame.time_base = input_frames[index_frame].time_base | ||
output_frame_list.append(output_frame) | ||
return output_frame_list | ||
|
||
def inference(self, input_tensor): | ||
input_tensor_ov = ov.Tensor(array=input_tensor, shared_memory=True) | ||
self.infer_request.set_input_tensor(input_tensor_ov) | ||
self.infer_request.start_async() | ||
self.infer_request.wait() | ||
score, boxes = self.infer_request.output_tensors | ||
return score.data, boxes.data | ||
|
||
def detect(self): | ||
frame_num = min(self.frame_cache_.qsize(), self.in_frame_num_) | ||
input_frames = [] | ||
input_pil_arrays = [] | ||
if frame_num == 0: | ||
return [], [] | ||
for i in range(frame_num): | ||
vf = self.frame_cache_.get() | ||
input_frames.append(vf) | ||
|
||
rgb = mp.PixelInfo(mp.kPF_RGB24) | ||
numpy_vf = vf.reformat(rgb).frame().plane(0).numpy() | ||
input_pil_arrays.append(Image.fromarray(numpy_vf)) | ||
|
||
input_tensor = self.pre_process(input_pil_arrays) | ||
scores, boxes = self.inference(input_tensor) | ||
detect_result_list = self.post_process(input_pil_arrays, boxes, scores) | ||
if self.label_frame_flag_ == 1: | ||
result_frames = self.label_frame(input_frames, input_pil_arrays, | ||
detect_result_list) | ||
return result_frames, detect_result_list | ||
|
||
return input_frames, detect_result_list | ||
|
||
def process(self, task): | ||
input_queue = task.get_inputs()[0] | ||
output_queue_size = len(task.get_outputs()) | ||
|
||
while not input_queue.empty(): | ||
pkt = input_queue.get() | ||
if pkt.timestamp == Timestamp.EOF: | ||
# we should done all frames processing in following loop | ||
self.eof_received_ = True | ||
if pkt.is_(VideoFrame): | ||
self.frame_cache_.put(pkt.get(VideoFrame)) | ||
# detect processing | ||
while self.frame_cache_.qsize() >= self.in_frame_num_ or \ | ||
self.eof_received_: | ||
data_list, extra_data_list = self.detect() | ||
for index in range(len(data_list)): | ||
# add sr output frame to task output queue | ||
pkt = Packet(data_list[index]) | ||
pkt.timestamp = data_list[index].pts | ||
task.get_outputs()[0].put(pkt) | ||
# push output | ||
if (output_queue_size >= 2): | ||
pkt = Packet(extra_data_list[index]) | ||
pkt.timestamp = data_list[index].pts | ||
task.get_outputs()[1].put(pkt) | ||
|
||
# all frames processed, quit the loop | ||
if self.frame_cache_.empty(): | ||
break | ||
|
||
# add eof packet to output | ||
if self.eof_received_: | ||
for key in task.get_outputs(): | ||
task.get_outputs()[key].put(Packet.generate_eof_packet()) | ||
Log.log_node(LogLevel.DEBUG, self.node_, 'output stream', 'done') | ||
task.set_timestamp(Timestamp.DONE) | ||
|
||
return ProcessResult.OK |