QPRx2025 found in Instant Folder QPRx2025.py
This project implements various algorithms and methods to handle data efficiently. Below are the key components and their corresponding mathematical calculations.
import time
class QPRx2025:
"""Quantum Processing Relay: Instantly query a result!"""
def __init__(self, seed=None):
self.CHARACTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
self.LCG_PARAMS = {
'a': 1664525,
'c': 1013904223,
'm': 4294967296
}
self.seed = None
self.entropy = None
if seed is not None:
self.seed = seed % 1000000
self.entropy = self.mix_entropy(int(time.time() * 1000))
The entropy is mixed using bitwise operations:
mixed_entropy = value XOR (value >> 32) XOR (value >> 16) XOR (value >> 8) XOR value
def mix_entropy(self, value):
return value ^ (value >> 32) ^ (value >> 16) ^ (value >> 8) ^ value
The LCG updates the seed using the parameters ( a ), ( c ), and ( m ):
new_seed = (a * seed + c + entropy) % m
new_entropy = mix_entropy(new_seed + current_time)
def lcg(self, a=None, c=None, m=None):
if self.seed is None or self.entropy is None:
raise ValueError('Seed and entropy must be initialized to use LCG')
if a is None: a = self.LCG_PARAMS['a']
if c is None: c = self.LCG_PARAMS['c']
if m is None: m = self.LCG_PARAMS['m']
self.seed = (a * self.seed + c + self.entropy) % m
self.entropy = self.mix_entropy(self.seed + int(time.time() * 1000))
return self.seed
The Mersenne Twister is initialized and generates random numbers:
def mersenne_twister(self):
if self.seed is None:
raise ValueError('Seed must be initialized to use Mersenne Twister')
MT = [0] * 624
index = 0
def initialize(seed):
MT[0] = seed
for i in range(1, 624):
MT[i] = (0x6c078965 * (MT[i - 1] ^ (MT[i - 1] >> 30)) + i) & 0xffffffff
def generate_numbers():
for i in range(624):
y = (MT[i] & 0x80000000) + (MT[(i + 1) % 624] & 0x7fffffff)
MT[i] = MT[(i + 397) % 624] ^ (y >> 1)
if y % 2 != 0:
MT[i] ^= 0x9908b0df
def extract_number():
nonlocal index
if index == 0:
generate_numbers()
y = MT[index]
y ^= y >> 11
y ^= (y << 7) & 0x9d2c5680
y ^= (y << 15) & 0xefc60000
y ^= y >> 18
index = (index + 1) % 624
return y
initialize(self.seed)
return extract_number()
Combines LCG and Mersenne Twister values:
quantum_value = ((lcg_value + mt_value) % 1000000) % max_val
def quantum_polls_relay(self, max_val):
if not isinstance(max_val, int) or max_val <= 0:
raise ValueError('Invalid max value for QuantumPollsRelay')
lcg_value = self.lcg()
mt_value = self.mersenne_twister()
return ((lcg_value + mt_value) % 1000000) % max_val
The example demonstrates sorting a list of cities:
def morton_order(self, city):
def interleave_bits(x, y):
def spread_bits(v):
v = (v | (v << 8)) & 0x00FF00FF
v = (v | (v << 4)) & 0x0F0F0F0F
v = (v | (v << 2)) & 0x33333333
v = (v | (v << 1)) & 0x55555555
return v
return spread_bits(x) | (spread_bits(y) << 1)
x = int(city['x'] * 10000)
y = int(city['y'] * 10000)
return interleave_bits(x, y)
def dont_matter(self, cities):
if not cities:
print("No cities to process. Please check the input data.")
return []
start_sort_time = time.time()
cities_sorted = sorted(cities, key=self.morton_order)
sorted_path = [cities_sorted.pop(0)]
cities_sorted.sort(key=lambda city: (city['x'], city['y']))
sorted_path.extend(cities_sorted)
sorted_path.append(sorted_path[0])
end_sort_time = time.time()
sort_time = round((end_sort_time - start_sort_time) * 1000, 2)
print(f"Sort Time (ms): {sort_time}")
return sorted_path
# Create an instance of QPRx2025
qprx = QPRx2025() # QPRx2025(seed=12345)
# Define the cities data
cities = [
{'name': 'City0', 'x': 710, 'y': 168},
{'name': 'City1', 'x': 737, 'y': 137},
{'name': 'City2', 'x': 761, 'y': 101},
{'name': 'City3', 'x': 661, 'y': 125},
{'name': 'City4', 'x': 707, 'y': 185},
{'name': 'City5', 'x': 612, 'y': 126},
{'name': 'City6', 'x': 682, 'y': 198},
{'name': 'City7', 'x': 829, 'y': 137},
]
# Trigger sorting
sorted_cities = qprx.dont_matter(cities)
# Fetch the first, second-to-last starting points, and last
if sorted_cities:
first_city = sorted_cities[0]
second_to_last_city = sorted_cities[-2]
last_city = sorted_cities[-1]
# Log the results
print(f"First starting point: {first_city}")
print(f"Second-to-last starting point: {second_to_last_city}")
print(f"Last starting point: {last_city}")
This project is licensed under the terms of the File.
© [BadNintendo] 2024. All rights reserved.