Skip to content

Commit

Permalink
Add constrained synthetic test functions (pytorch#1832)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: pytorch#1832

Adds the following engineering-problem test functions:
- PressureVesselDesign
- WeldedBeam
- SpeedReducer
- TensionCompressionString

Reviewed By: SebastianAment

Differential Revision: D45821102

fbshipit-source-id: 9dfda0cb48d218588e3528e32c249fe131b56d70
  • Loading branch information
Balandat authored and facebook-github-bot committed May 13, 2023
1 parent 087901c commit 300b8bf
Show file tree
Hide file tree
Showing 2 changed files with 228 additions and 2 deletions.
206 changes: 204 additions & 2 deletions botorch/test_functions/synthetic.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,29 @@

r"""
Synthetic functions for optimization benchmarks.
Reference: https://www.sfu.ca/~ssurjano/optimization.html
References:
.. [Bingham2013virtual]
D. Bingham, S. Surjanovic. Virtual Library of Simulation Experiments.
https://www.sfu.ca/~ssurjano/optimization.html
.. [CoelloCoello2002constraint]
C. A. Coello Coello and E. Mezura Montes. Constraint-handling in genetic
algorithms through the use of dominance-based tournament selection.
Advanced Engineering Informatics, 16(3):193–203, 2002.
.. [Hedar2006derivfree]
A.-R. Hedar and M. Fukushima. Derivative-free filter simulated annealing
method for constrained continuous global optimization. Journal of Global
Optimization, 35(4):521–549, 2006.
.. [Lemonge2010constrained]
A. C. C. Lemonge, H. J. C. Barbosa, C. C. H. Borges, and F. B. dos Santos
Silva. Constrained optimization problems in mechanical engineering design
using a real-coded steady-state genetic algorithm. Mecánica Computacional,
XXIX:9287–9303, 2010.
"""

from __future__ import annotations
Expand All @@ -15,7 +37,8 @@
from typing import List, Optional, Tuple

import torch
from botorch.test_functions.base import BaseTestProblem
from botorch.test_functions.base import BaseTestProblem, ConstrainedBaseTestProblem
from botorch.test_functions.utils import round_nearest
from torch import Tensor


Expand Down Expand Up @@ -791,3 +814,182 @@ class ThreeHumpCamel(SyntheticTestFunction):
def evaluate_true(self, X: Tensor) -> Tensor:
x1, x2 = X[..., 0], X[..., 1]
return 2.0 * x1**2 - 1.05 * x1**4 + x1**6 / 6.0 + x1 * x2 + x2**2


# ------------ Constrained synthetic test functions ----------- #


class PressureVesselDesign(SyntheticTestFunction, ConstrainedBaseTestProblem):
r"""Pressure vessel design problem with constraints.
The four-dimensional pressure vessel design problem with four black-box
constraints from [CoelloCoello2002constraint]_.
"""

dim = 4
num_constraints = 4
_bounds = [(0.0, 10.0), (0.0, 10.0), (10.0, 50.0), (150.0, 200.0)]

def evaluate_true(self, X: Tensor) -> Tensor:
x1, x2, x3, x4 = X.unbind(-1)
x1 = round_nearest(x1, increment=0.0625, bounds=self._bounds[0])
x2 = round_nearest(x2, increment=0.0625, bounds=self._bounds[1])
return (
0.6224 * x1 * x3 * x4
+ 1.7781 * x2 * (x3**2)
+ 3.1661 * (x1**2) * x4
+ 19.84 * (x1**2) * x3
)

def evaluate_slack_true(self, X: Tensor) -> Tensor:
x1, x2, x3, x4 = X.unbind(-1)
return -torch.stack(
[
-x1 + 0.0193 * x3,
-x2 + 0.00954 * x3,
-math.pi * (x3**2) * x4 - (4 / 3) * math.pi * (x3**3) + 1296000.0,
x4 - 240.0,
],
dim=-1,
)


class WeldedBeam(SyntheticTestFunction, ConstrainedBaseTestProblem):
r"""Welded beam design problem with constraints.
The four-dimensional welded beam design proble problem with six
black-box constraints from [CoelloCoello2002constraint]_.
"""

dim = 4
num_constraints = 6
_bounds = [(0.125, 10.0), (0.1, 10.0), (0.1, 10.0), (0.1, 10.0)]

def evaluate_true(self, X: Tensor) -> Tensor:
x1, x2, x3, x4 = X.unbind(-1)
return 1.10471 * (x1**2) * x2 + 0.04811 * x3 * x4 * (14.0 + x2)

def evaluate_slack_true(self, X: Tensor) -> Tensor:
x1, x2, x3, x4 = X.unbind(-1)
P = 6000.0
L = 14.0
E = 30e6
G = 12e6
t_max = 13600.0
s_max = 30000.0
d_max = 0.25

M = P * (L + x2 / 2)
R = torch.sqrt(0.25 * (x2**2 + (x1 + x3) ** 2))
J = 2 * math.sqrt(2) * x1 * x2 * (x2**2 / 12 + 0.25 * (x1 + x3) ** 2)
P_c = (
4.013
* E
* x3
* (x4**3)
* 6
/ (L**2)
* (1 - 0.25 * x3 * math.sqrt(E / G) / L)
)
t1 = P / (math.sqrt(2) * x1 * x2)
t2 = M * R / J
t = torch.sqrt(t1**2 + t1 * t2 * x2 / R + t2**2)
s = 6 * P * L / (x4 * x3**2)
d = 4 * P * L**3 / (E * x3**3 * x4)

return -torch.stack(
[
t - t_max,
s - s_max,
x1 - x4,
0.10471 * x1**2 + 0.04811 * x3 * x4 * (14.0 + x2) - 5.0,
d - d_max,
P - P_c,
],
dim=-1,
)


class TensionCompressionString(SyntheticTestFunction, ConstrainedBaseTestProblem):
r"""Tension compression string optimization problem with constraints.
The three-dimensional tension compression string optimization problem with
four black-box constraints from [Hedar2006derivfree]_.
"""

dim = 3
num_constraints = 4
_bounds = [(0.01, 1.0), (0.01, 1.0), (0.01, 20.0)]

def evaluate_true(self, X: Tensor) -> Tensor:
x1, x2, x3 = X.unbind(-1)
return (x1**2) * x2 * (x3 + 2)

def evaluate_slack_true(self, X: Tensor) -> Tensor:
x1, x2, x3 = X.unbind(-1)
constraints = torch.stack(
[
1 - (x2**3) * x3 / (71785 * (x1**4)),
(4 * (x2**2) - x1 * x2) / (12566 * (x1**3) * (x2 - x1))
+ 1 / (5108 * (x1**2))
- 1,
1 - 140.45 * x1 / (x3 * (x2**2)),
(x1 + x2) / 1.5 - 1,
],
dim=-1,
)
return -constraints.clamp_max(100)


class SpeedReducer(SyntheticTestFunction, ConstrainedBaseTestProblem):
r"""Speed Reducer design problem with constraints.
The seven-dimensional speed reducer design problem with eleven black-box
constraints from [Lemonge2010constrained]_.
"""

dim = 7
num_constraints = 11
_bounds = [
(2.6, 3.6),
(0.7, 0.8),
(17.0, 28.0),
(7.3, 8.3),
(7.8, 8.3),
(2.9, 3.9),
(5.0, 5.5),
]

def evaluate_true(self, X: Tensor) -> Tensor:
x1, x2, x3, x4, x5, x6, x7 = X.unbind(-1)
return (
0.7854 * x1 * (x2**2) * (3.3333 * (x3**2) + 14.9334 * x3 - 43.0934)
+ -1.508 * x1 * (x6**2 + x7**2)
+ 7.4777 * (x6**3 + x7**3)
+ 0.7854 * (x4 * (x6**2) + x5 * (x7**2))
)

def evaluate_slack_true(self, X: Tensor) -> Tensor:
x1, x2, x3, x4, x5, x6, x7 = X.unbind(-1)
return -torch.stack(
[
27.0 * (1 / x1) * (1 / (x2**2)) * (1 / x3) - 1,
397.5 * (1 / x1) * (1 / (x2**2)) * (1 / (x3**2)) - 1,
1.93 * (1 / x2) * (1 / x3) * (x4**3) * (1 / (x6**4)) - 1,
1.93 * (1 / x2) * (1 / x3) * (x5**3) * (1 / (x7**4)) - 1,
1
/ (0.1 * (x6**3))
* torch.sqrt((745 * x4 / (x2 * x3)) ** 2 + 16.9 * 1e6)
- 1100,
1
/ (0.1 * (x7**3))
* torch.sqrt((745 * x5 / (x2 * x3)) ** 2 + 157.5 * 1e6)
- 850,
x2 * x3 - 40,
5 - x1 / x2,
x1 / x2 - 12,
(1.5 * x6 + 1.9) / x4 - 1,
(1.1 * x7 + 1.9) / x5 - 1,
],
dim=-1,
)
24 changes: 24 additions & 0 deletions botorch/test_functions/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


from __future__ import annotations

from typing import Optional, Tuple

import torch

from torch import Tensor


def round_nearest(
X: Tensor, increment: float, bounds: Optional[Tuple[float, float]]
) -> Tensor:
X_round = torch.round(X / increment) * increment
if bounds is not None:
X_round = torch.where(X_round < bounds[0], X_round + increment, X_round)
X_round = torch.where(X_round > bounds[1], X_round - increment, X_round)
return X_round

0 comments on commit 300b8bf

Please sign in to comment.