Skip to content

Commit

Permalink
[Prim][NewIR] Support prim all in new IR (PaddlePaddle#56614)
Browse files Browse the repository at this point in the history
* support prim all in new ir

* process makefile

* fix rule bug

* polish case

* fix flag

* fix rules bug
  • Loading branch information
cyber-pioneer authored and BeingGod committed Sep 9, 2023
1 parent 59352f2 commit 8609f06
Show file tree
Hide file tree
Showing 6 changed files with 121 additions and 10 deletions.
4 changes: 3 additions & 1 deletion python/paddle/decomposition/decomp.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ def _build_tensor_tuple(xs):
return (xs,)
elif isinstance(xs, typing.Sequence):
return tuple(xs)
return TypeError(f"Type {type(xs)} is not supported")
return TypeError(f"Type {type(xs)} is not supported.")


def _prepare_python_api_arguments(op):
Expand Down Expand Up @@ -125,6 +125,8 @@ def decompose(
Returns:
dst_vars (list): A list contains all vars which replace origin ones in src_vars.
"""
if not core._is_fwd_prim_enabled():
return src_vars
if not isinstance(program, Program):
raise TypeError(f"Expect type Program, but got type {type(program)}.")
block = program.block()
Expand Down
5 changes: 3 additions & 2 deletions python/paddle/decomposition/rules.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,9 @@
def mean(x, axis, keepdim):
"""define composite rule of op mean"""
x_shape = x.shape
axes = axis or tuple(range(0, len(x_shape)))
axes = (axes,) if isinstance(axes, int) else axes
if axis in (None, []):
axis = tuple(range(0, len(x_shape)))
axes = (axis,) if isinstance(axis, int) else axis
sum_x = sum(x, axis=axes, keepdim=keepdim)
value_to_fill = 1
for axis in axes:
Expand Down
9 changes: 5 additions & 4 deletions python/paddle/incubate/autograd/composite_rules.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,11 +171,11 @@ def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis):
out = difference * rsqrt_var

if scale is not None:
if x.shape[begin_norm_axis:] is not scale.shape:
if x.shape[begin_norm_axis:] != scale.shape:
scale = reshape(scale, x.shape[begin_norm_axis:])
out = out * scale
if bias is not None:
if x.shape[begin_norm_axis:] is not bias.shape:
if x.shape[begin_norm_axis:] != bias.shape:
bias = reshape(bias, x.shape[begin_norm_axis:])
out = out + bias

Expand Down Expand Up @@ -266,8 +266,9 @@ def mean_composite(x, axis, keepdim):
is_amp = True
x = cast(x, "float32")

axes = axis or list(range(0, len(x.shape)))
axes = [axes] if isinstance(axes, int) else axes
if axis in (None, []):
axis = tuple(range(0, len(x.shape)))
axes = (axis,) if isinstance(axis, int) else axis
sum_x = sum(x, axis=axes, keepdim=keepdim)
ele_nums_list = [x.shape[axis] for axis in axes]
if ele_nums_list == []:
Expand Down
16 changes: 13 additions & 3 deletions test/prim/new_ir_prim/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,10 +1,20 @@
set(TEST_PRIM_PURE_NEW_IR_CASES test_prim_program)

foreach(target ${TEST_PRIM_PURE_NEW_IR_CASES})
py_test_modules(${target} MODULES ${target} ENVS GLOG_v=1
FLAGS_enable_new_ir_api=true)
endforeach()

file(
GLOB TEST_INTERP_CASES
GLOB TEST_PRIM_TRANS_NEW_IR_CASES
RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}"
"test_*.py")
string(REPLACE ".py" "" TEST_INTERP_CASES "${TEST_INTERP_CASES}")
string(REPLACE ".py" "" TEST_PRIM_TRANS_NEW_IR_CASES
"${TEST_PRIM_TRANS_NEW_IR_CASES}")

list(REMOVE_ITEM TEST_PRIM_TRANS_NEW_IR_CASES ${TEST_PRIM_PURE_NEW_IR_CASES})

foreach(target ${TEST_INTERP_CASES})
foreach(target ${TEST_PRIM_TRANS_NEW_IR_CASES})
py_test_modules(${target} MODULES ${target} ENVS GLOG_v=1
FLAGS_enable_new_ir_in_executor=true)
endforeach()
3 changes: 3 additions & 0 deletions test/prim/new_ir_prim/test_decomp_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import paddle
from paddle import ir
from paddle.decomposition import decompose
from paddle.framework import core

paddle.enable_static()

Expand Down Expand Up @@ -44,7 +45,9 @@ def test_build_op(self):
y = newir_program.block().ops[-2].results()
orig_shape = y[0].shape
paddle.framework.set_flags({"FLAGS_enable_new_ir_api": True})
core._set_prim_forward_enabled(True)
y_new = decompose(newir_program, y)
core._set_prim_forward_enabled(False)
new_shape = y_new[0].shape
assert (
orig_shape == new_shape
Expand Down
94 changes: 94 additions & 0 deletions test/prim/new_ir_prim/test_prim_program.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

import paddle
from paddle.autograd.backward import grad
from paddle.decomposition import decompose
from paddle.framework import core

paddle.enable_static()


class TestPrimMode(unittest.TestCase):
def setUp(self):
np.random.seed(2023)
self.shape_x = [8, 16, 32, 64]
self.shape_y = [8, 16, 32, 64]
self.x = np.random.random(self.shape_x).astype("float32")
self.y = np.random.random(self.shape_y).astype("float32")

def base_net(self, flag=None):
if flag == "forward":
core._set_prim_forward_enabled(True)
elif flag == "backward":
core._set_prim_backward_enabled(True)
elif flag == "all":
core._set_prim_all_enabled(True)
main_program = paddle.static.Program()
with paddle.static.program_guard(main_program):
x = paddle.static.data('x', self.shape_x, dtype='float32')
y = paddle.static.data('y', self.shape_y, dtype='float32')
x.stop_gradient = False
y.stop_gradient = False
divide_out = paddle.divide(x, y)
sum_out = paddle.mean(divide_out, axis=0)
[new_out] = decompose(main_program, [sum_out])
gradients = grad(new_out, (x, y))

exe = paddle.static.Executor()
[fwd, dx, dy] = exe.run(
feed={'x': self.x, 'y': self.y}, fetch_list=[new_out, gradients]
)

whole_ops = [op.name() for op in main_program.block().ops]
if flag == "forward":
core._set_prim_forward_enabled(False)
assert 'pd.mean' not in whole_ops and 'pd.divide_grad' in whole_ops
elif flag == "backward":
core._set_prim_backward_enabled(False)
assert 'pd.mean' in whole_ops and 'pd.divide_grad' not in whole_ops
elif flag == "all":
core._set_prim_all_enabled(False)
assert (
'pd.mean' not in whole_ops and 'pd.divide_grad' not in whole_ops
)
else:
assert 'pd.mean' in whole_ops and 'pd.divide_grad' in whole_ops
return fwd, dx, dy

def test_prim_forward(self):
res_ref = self.base_net()
res = self.base_net("forward")
for ref, actual in zip(res_ref, res):
np.testing.assert_equal(ref, actual)

def test_prim_backward(self):
res_ref = self.base_net()
res = self.base_net("backward")
for ref, actual in zip(res_ref, res):
np.testing.assert_allclose(ref, actual, rtol=1e-6)

def test_prim_all(self):
res_ref = self.base_net()
res = self.base_net("all")
for ref, actual in zip(res_ref, res):
np.testing.assert_allclose(ref, actual, rtol=1e-6)


if __name__ == "__main__":
unittest.main()

0 comments on commit 8609f06

Please sign in to comment.