Skip to content

Commit

Permalink
[Fluid] move lars_momentum_xpu to phi (PaddlePaddle#56751)
Browse files Browse the repository at this point in the history
* [Fluid] move lars_momentum_xpu to phi

* Empty-Commit;test=kunlun;
  • Loading branch information
gouzil authored and BeingGod committed Sep 9, 2023
1 parent 4144787 commit 8a48105
Show file tree
Hide file tree
Showing 2 changed files with 113 additions and 125 deletions.
125 changes: 0 additions & 125 deletions paddle/fluid/operators/optimizers/lars_momentum_op_xpu.cc

This file was deleted.

113 changes: 113 additions & 0 deletions paddle/phi/kernels/xpu/lars_momentum_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/lars_momentum_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void LarsMomentumKernel(
const Context& dev_ctx,
const std::vector<const DenseTensor*>& param,
const std::vector<const DenseTensor*>& velocity,
const std::vector<const DenseTensor*>& learning_rate,
const std::vector<const DenseTensor*>& grad,
const paddle::optional<std::vector<const DenseTensor*>>& master_param,
const std::vector<float>& weight_decay_arr,
float mu,
float lars_coeff,
float epsilon,
bool multi_precision,
float rescale_grad,
std::vector<DenseTensor*> param_out,
std::vector<DenseTensor*> velocity_out,
std::vector<DenseTensor*> master_param_out) {
using XPUType = typename XPUTypeTrait<T>::Type;
std::vector<XPUType*> param_list;
std::vector<XPUType*> grad_list;
std::vector<XPUType*> param_out_list;
std::vector<float*> velocity_list;
std::vector<float*> velocity_out_list;
std::vector<float*> lrs;
std::vector<int> param_sizes;

std::vector<float*> master_param_list;
std::vector<float*> master_param_out_list;
int op_num = param.size();
for (int i = 0; i < op_num; ++i) {
param_list.push_back(
reinterpret_cast<XPUType*>(const_cast<T*>((param[i]->data<T>()))));
grad_list.push_back(
reinterpret_cast<XPUType*>(const_cast<T*>(grad[i]->data<T>())));
param_out_list.push_back(
reinterpret_cast<XPUType*>(dev_ctx.template Alloc<T>(param_out[i])));
velocity_list.push_back(const_cast<float*>(velocity[i]->data<float>()));
velocity_out_list.push_back(dev_ctx.template Alloc<float>(velocity_out[i]));
lrs.push_back(const_cast<float*>(learning_rate[i]->data<float>()));
param_sizes.push_back(param[i]->numel());

PADDLE_ENFORCE_EQ(
param_list[i],
param_out_list[i],
phi::errors::InvalidArgument(
"Input(Param) and Output(ParamOut) must be the same Tensors."));
PADDLE_ENFORCE_EQ(velocity_list[i],
velocity_out_list[i],
phi::errors::InvalidArgument(
"Input(Velocity) and Output(VelocityOut) must be "
"the same Tensors."));
if (multi_precision) {
master_param_list.push_back(
const_cast<float*>(master_param.get()[i]->data<float>()));
master_param_out_list.push_back(
dev_ctx.template Alloc<float>(master_param_out[i]));
PADDLE_ENFORCE_EQ(master_param_list[i],
master_param_out_list[i],
phi::errors::InvalidArgument(
"Input(MasterParam) and Output(MasterParamOut) "
"must be the same Tensors."));
} else {
master_param_list.push_back(nullptr);
master_param_out_list.push_back(nullptr);
}
}

int r = lars_momentum(dev_ctx.x_context(),
param_list,
grad_list,
velocity_list,
lrs,
master_param_list,
param_out_list,
velocity_out_list,
master_param_out_list,
weight_decay_arr,
param_sizes,
mu,
lars_coeff,
epsilon,
rescale_grad);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "lars_momentum");
}
} // namespace phi

PD_REGISTER_KERNEL(lars_momentum,
XPU,
ALL_LAYOUT,
phi::LarsMomentumKernel,
float,
phi::dtype::float16) {}

0 comments on commit 8a48105

Please sign in to comment.