Skip to content

Commit

Permalink
[CI] Fix adaptation prompt CI on transformers main (huggingface#1465)
Browse files Browse the repository at this point in the history
* fix adaptation prompt CI

* add fix

* forward contrib credits from discussion

* add docstring

---------

Co-authored-by: BenjaminBossan <BenjaminBossan@users.noreply.github.com>
  • Loading branch information
younesbelkada and BenjaminBossan committed Mar 14, 2024
1 parent d0ef896 commit a5e2234
Showing 1 changed file with 21 additions and 28 deletions.
49 changes: 21 additions & 28 deletions src/peft/tuners/adaption_prompt/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,19 +59,18 @@ def llama_apply_rotary_pos_emb(q, cos, sin, position_ids):

def llama_compute_query_states(model: nn.Module, **kwargs) -> torch.Tensor:
"""
Compute query states for Llama models specifically.
They need to be recomputed as the forward() method of the original LlamaModel in the transformers library does not
return them. See the related discussion in the PR: https://github.com/huggingface/peft/pull/268
Compute query states for Llama models specifically. They need to be recomputed as the forward() method of the
original LlamaModel in the transformers library does not return them. See the related discussion in the PR:
https://github.com/huggingface/peft/pull/268
"""
hidden_states = kwargs.get("hidden_states")
position_ids = kwargs.get("position_ids")
past_key_value = kwargs.get("past_key_value")
bsz, q_len, _ = hidden_states.size()
query_states = model.q_proj(hidden_states).view(bsz, q_len, model.num_heads, model.head_dim).transpose(1, 2)
value_states = model.v_proj(hidden_states).view(bsz, q_len, model.num_heads, model.head_dim).transpose(1, 2)

seq_len = q_len

if past_key_value is not None:
if isinstance(past_key_value, tuple):
# for transformers <= 4.35
Expand All @@ -80,30 +79,24 @@ def llama_compute_query_states(model: nn.Module, **kwargs) -> torch.Tensor:
# since transformers 4.36, this is a DynamicCache instance
seq_len += past_key_value.get_seq_length(model.layer_idx)

# For transformers > 4.37.2 `position_ids` became a required arguments in the
# rotary embedding's forward pass. and cos/sin are indexed through the
# `rotary_emb` forward pass.
if "position_ids" in list(inspect.signature(model.rotary_emb.forward).parameters):
if position_ids is None:
kv_seq_len = value_states.shape[-2]
past_seen_tokens = past_key_value.get_usable_length(kv_seq_len, model.layer_idx)
kv_seq_len += past_seen_tokens

new_cache_positions = torch.arange(
past_seen_tokens, past_seen_tokens + q_len, device=value_states.device
)
position_ids = new_cache_positions.unsqueeze(0)

cos, sin = model.rotary_emb(value_states, seq_len=kv_seq_len, position_ids=position_ids)

# Here cos and sin are are already indexed correctly, therefore to avoid adding
# boilerplate in `llama_apply_rotary_pos_emb` we just return here the correct query states
# embeddings
return (query_states * cos) + (llama_rotate_half(query_states) * sin)

cos, sin = model.rotary_emb(value_states, seq_len=seq_len)
# For transformers > 4.37.2 `position_ids` became a required arguments in the rotary embedding's forward pass.
if "position_ids" not in inspect.signature(model.rotary_emb.forward).parameters:
# TODO we assume that position_ids is not None here, not sure if that is safe but the old code also did that
cos, sin = model.rotary_emb(value_states, seq_len=seq_len)
return llama_apply_rotary_pos_emb(query_states, cos, sin, position_ids)

past_seen_tokens = 0
if position_ids is None:
# Compute position_ids, since they are required for transformers > 4.37.2
if past_key_value is None:
new_cache_positions = torch.arange(q_len, q_len + q_len, device=value_states.device)
else:
past_seen_tokens = past_key_value.get_usable_length(q_len, model.layer_idx)
new_cache_positions = torch.arange(past_seen_tokens, past_seen_tokens + q_len, device=value_states.device)
position_ids = new_cache_positions.unsqueeze(0)

return llama_apply_rotary_pos_emb(query_states, cos, sin, position_ids)
cos, sin = model.rotary_emb(value_states, seq_len=q_len + past_seen_tokens, position_ids=position_ids)
return (query_states * cos) + (llama_rotate_half(query_states) * sin)


def is_adaption_prompt_trainable(params: str) -> bool:
Expand Down

0 comments on commit a5e2234

Please sign in to comment.