Skip to content

Commit

Permalink
refactor(sagemaker/): separate chat + completion routes + make them b… (
Browse files Browse the repository at this point in the history
#7151)

* refactor(sagemaker/): separate chat + completion routes + make them both use base llm config

Addresses andrewyng/aisuite#113 (comment)

* fix(main.py): pass hf model name + custom prompt dict to litellm params
  • Loading branch information
krrishdholakia authored Dec 11, 2024
1 parent 1e87782 commit e903fe6
Show file tree
Hide file tree
Showing 14 changed files with 799 additions and 534 deletions.
3 changes: 2 additions & 1 deletion litellm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -1103,7 +1103,8 @@ class LlmProviders(str, Enum):
VertexAIAi21Config,
)

from .llms.sagemaker.sagemaker import SagemakerConfig
from .llms.sagemaker.completion.transformation import SagemakerConfig
from .llms.sagemaker.chat.transformation import SagemakerChatConfig
from .llms.ollama import OllamaConfig
from .llms.ollama_chat import OllamaChatConfig
from .llms.maritalk import MaritTalkConfig
Expand Down
2 changes: 1 addition & 1 deletion litellm/litellm_core_utils/get_supported_openai_params.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,7 +182,7 @@ def get_supported_openai_params( # noqa: PLR0915
elif request_type == "embeddings":
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
elif custom_llm_provider == "sagemaker":
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
return litellm.SagemakerConfig().get_supported_openai_params(model=model)
elif custom_llm_provider == "aleph_alpha":
return [
"max_tokens",
Expand Down
6 changes: 5 additions & 1 deletion litellm/llms/OpenAI/chat/gpt_transformation.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,7 +182,11 @@ def transform_request(
Returns:
dict: The transformed request. Sent as the body of the API call.
"""
raise NotImplementedError
return {
"model": model,
"messages": messages,
**optional_params,
}

def transform_response(
self,
Expand Down
2 changes: 1 addition & 1 deletion litellm/llms/base_llm/transformation.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ def __init__(
self,
status_code: int,
message: str,
headers: Optional[Union[Dict, httpx.Headers]] = None,
headers: Optional[Union[httpx.Headers, Dict]] = None,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
):
Expand Down
179 changes: 179 additions & 0 deletions litellm/llms/sagemaker/chat/handler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
import json
from copy import deepcopy
from typing import Any, Callable, Dict, Optional, Union

import httpx

from litellm.utils import ModelResponse, get_secret

from ...base_aws_llm import BaseAWSLLM
from ...prompt_templates.factory import custom_prompt, prompt_factory
from ..common_utils import AWSEventStreamDecoder
from .transformation import SagemakerChatConfig


class SagemakerChatHandler(BaseAWSLLM):

def _load_credentials(
self,
optional_params: dict,
):
try:
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
## CREDENTIALS ##
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_session_token = optional_params.pop("aws_session_token", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_role_name = optional_params.pop("aws_role_name", None)
aws_session_name = optional_params.pop("aws_session_name", None)
aws_profile_name = optional_params.pop("aws_profile_name", None)
optional_params.pop(
"aws_bedrock_runtime_endpoint", None
) # https://bedrock-runtime.{region_name}.amazonaws.com
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)

### SET REGION NAME ###
if aws_region_name is None:
# check env #
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)

if litellm_aws_region_name is not None and isinstance(
litellm_aws_region_name, str
):
aws_region_name = litellm_aws_region_name

standard_aws_region_name = get_secret("AWS_REGION", None)
if standard_aws_region_name is not None and isinstance(
standard_aws_region_name, str
):
aws_region_name = standard_aws_region_name

if aws_region_name is None:
aws_region_name = "us-west-2"

credentials: Credentials = self.get_credentials(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
aws_region_name=aws_region_name,
aws_session_name=aws_session_name,
aws_profile_name=aws_profile_name,
aws_role_name=aws_role_name,
aws_web_identity_token=aws_web_identity_token,
aws_sts_endpoint=aws_sts_endpoint,
)
return credentials, aws_region_name

def _prepare_request(
self,
credentials,
model: str,
data: dict,
optional_params: dict,
aws_region_name: str,
extra_headers: Optional[dict] = None,
):
try:
import boto3
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")

sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
if optional_params.get("stream") is True:
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
else:
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"

sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
if sagemaker_base_url is not None:
api_base = sagemaker_base_url

encoded_data = json.dumps(data).encode("utf-8")
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
request = AWSRequest(
method="POST", url=api_base, data=encoded_data, headers=headers
)
sigv4.add_auth(request)
if (
extra_headers is not None and "Authorization" in extra_headers
): # prevent sigv4 from overwriting the auth header
request.headers["Authorization"] = extra_headers["Authorization"]

prepped_request = request.prepare()

return prepped_request

def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
litellm_params: dict,
timeout: Optional[Union[float, httpx.Timeout]] = None,
custom_prompt_dict={},
logger_fn=None,
acompletion: bool = False,
headers: dict = {},
):

# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
credentials, aws_region_name = self._load_credentials(optional_params)
inference_params = deepcopy(optional_params)
stream = inference_params.pop("stream", None)

from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler

openai_like_chat_completions = OpenAILikeChatHandler()
inference_params["stream"] = True if stream is True else False
_data = SagemakerChatConfig().transform_request(
model=model,
messages=messages,
optional_params=inference_params,
litellm_params=litellm_params,
headers=headers,
)

prepared_request = self._prepare_request(
model=model,
data=_data,
optional_params=optional_params,
credentials=credentials,
aws_region_name=aws_region_name,
)

custom_stream_decoder = AWSEventStreamDecoder(model="", is_messages_api=True)

return openai_like_chat_completions.completion(
model=model,
messages=messages,
api_base=prepared_request.url,
api_key=None,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
logging_obj=logging_obj,
optional_params=inference_params,
acompletion=acompletion,
litellm_params=litellm_params,
logger_fn=logger_fn,
timeout=timeout,
encoding=encoding,
headers=prepared_request.headers, # type: ignore
custom_endpoint=True,
custom_llm_provider="sagemaker_chat",
streaming_decoder=custom_stream_decoder, # type: ignore
)
26 changes: 26 additions & 0 deletions litellm/llms/sagemaker/chat/transformation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
"""
Translate from OpenAI's `/v1/chat/completions` to Sagemaker's `/invocations` API
Called if Sagemaker endpoint supports HF Messages API.
LiteLLM Docs: https://docs.litellm.ai/docs/providers/aws_sagemaker#sagemaker-messages-api
Huggingface Docs: https://huggingface.co/docs/text-generation-inference/en/messages_api
"""

from typing import Union

from httpx._models import Headers

from litellm.llms.base_llm.transformation import BaseLLMException

from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
from ..common_utils import SagemakerError


class SagemakerChatConfig(OpenAIGPTConfig):
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return SagemakerError(
status_code=status_code, message=error_message, headers=headers
)
Loading

0 comments on commit e903fe6

Please sign in to comment.