Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "LiteLLM Common Base LLM Config (pt.4): Move Ollama to Base LLM Config" #7160

Merged
merged 1 commit into from
Dec 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion litellm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -1103,7 +1103,6 @@ class LlmProviders(str, Enum):
VertexAIAi21Config,
)

from .llms.ollama.completion.handler import OllamaConfig
from .llms.sagemaker.completion.transformation import SagemakerConfig
from .llms.sagemaker.chat.transformation import SagemakerChatConfig
from .llms.ollama import OllamaConfig
Expand Down
2 changes: 1 addition & 1 deletion litellm/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
# "nlp_cloud",
# "petals",
# "oobabooga",
"ollama",
# "ollama",
# "ollama_chat",
# "deepinfra",
# "perplexity",
Expand Down
2 changes: 1 addition & 1 deletion litellm/litellm_core_utils/get_supported_openai_params.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ def get_supported_openai_params( # noqa: PLR0915
if custom_llm_provider == "bedrock":
return litellm.AmazonConverseConfig().get_supported_openai_params(model=model)
elif custom_llm_provider == "ollama":
return litellm.OllamaConfig().get_supported_openai_params(model=model)
return litellm.OllamaConfig().get_supported_openai_params()
elif custom_llm_provider == "ollama_chat":
return litellm.OllamaChatConfig().get_supported_openai_params()
elif custom_llm_provider == "anthropic":
Expand Down
251 changes: 227 additions & 24 deletions litellm/llms/ollama/completion/handler.py → litellm/llms/ollama.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,228 @@
from litellm.secret_managers.main import get_secret_str
from litellm.types.utils import ModelInfo, ProviderField, StreamingChoices

from ...prompt_templates.factory import custom_prompt, prompt_factory
from ..common_utils import OllamaError
from .transformation import OllamaConfig
from .prompt_templates.factory import custom_prompt, prompt_factory


class OllamaError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="http://localhost:11434")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs


class OllamaConfig:
"""
Reference: https://github.com/ollama/ollama/blob/main/docs/api.md#parameters

The class `OllamaConfig` provides the configuration for the Ollama's API interface. Below are the parameters:

- `mirostat` (int): Enable Mirostat sampling for controlling perplexity. Default is 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0. Example usage: mirostat 0

- `mirostat_eta` (float): Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. Default: 0.1. Example usage: mirostat_eta 0.1

- `mirostat_tau` (float): Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. Default: 5.0. Example usage: mirostat_tau 5.0

- `num_ctx` (int): Sets the size of the context window used to generate the next token. Default: 2048. Example usage: num_ctx 4096

- `num_gqa` (int): The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Example usage: num_gqa 1

- `num_gpu` (int): The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Example usage: num_gpu 0

- `num_thread` (int): Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Example usage: num_thread 8

- `repeat_last_n` (int): Sets how far back for the model to look back to prevent repetition. Default: 64, 0 = disabled, -1 = num_ctx. Example usage: repeat_last_n 64

- `repeat_penalty` (float): Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1. Example usage: repeat_penalty 1.1

- `temperature` (float): The temperature of the model. Increasing the temperature will make the model answer more creatively. Default: 0.8. Example usage: temperature 0.7

- `seed` (int): Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. Example usage: seed 42

- `stop` (string[]): Sets the stop sequences to use. Example usage: stop "AI assistant:"

- `tfs_z` (float): Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. Default: 1. Example usage: tfs_z 1

- `num_predict` (int): Maximum number of tokens to predict when generating text. Default: 128, -1 = infinite generation, -2 = fill context. Example usage: num_predict 42

- `top_k` (int): Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. Default: 40. Example usage: top_k 40

- `top_p` (float): Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. Default: 0.9. Example usage: top_p 0.9

- `system` (string): system prompt for model (overrides what is defined in the Modelfile)

- `template` (string): the full prompt or prompt template (overrides what is defined in the Modelfile)
"""

mirostat: Optional[int] = None
mirostat_eta: Optional[float] = None
mirostat_tau: Optional[float] = None
num_ctx: Optional[int] = None
num_gqa: Optional[int] = None
num_gpu: Optional[int] = None
num_thread: Optional[int] = None
repeat_last_n: Optional[int] = None
repeat_penalty: Optional[float] = None
temperature: Optional[float] = None
seed: Optional[int] = None
stop: Optional[list] = (
None # stop is a list based on this - https://github.com/ollama/ollama/pull/442
)
tfs_z: Optional[float] = None
num_predict: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
system: Optional[str] = None
template: Optional[str] = None

def __init__(
self,
mirostat: Optional[int] = None,
mirostat_eta: Optional[float] = None,
mirostat_tau: Optional[float] = None,
num_ctx: Optional[int] = None,
num_gqa: Optional[int] = None,
num_gpu: Optional[int] = None,
num_thread: Optional[int] = None,
repeat_last_n: Optional[int] = None,
repeat_penalty: Optional[float] = None,
temperature: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[list] = None,
tfs_z: Optional[float] = None,
num_predict: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
system: Optional[str] = None,
template: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)

@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}

def get_required_params(self) -> List[ProviderField]:
"""For a given provider, return it's required fields with a description"""
return [
ProviderField(
field_name="base_url",
field_type="string",
field_description="Your Ollama API Base",
field_value="http://10.10.11.249:11434",
)
]

def get_supported_openai_params(
self,
):
return [
"max_tokens",
"stream",
"top_p",
"temperature",
"seed",
"frequency_penalty",
"stop",
"response_format",
]

def map_openai_params(
self, optional_params: dict, non_default_params: dict
) -> dict:
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["num_predict"] = value
if param == "stream":
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "seed":
optional_params["seed"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "frequency_penalty":
optional_params["repeat_penalty"] = value
if param == "stop":
optional_params["stop"] = value
if param == "response_format" and isinstance(value, dict):
if value["type"] == "json_object":
optional_params["format"] = "json"

return optional_params

def _supports_function_calling(self, ollama_model_info: dict) -> bool:
"""
Check if the 'template' field in the ollama_model_info contains a 'tools' or 'function' key.
"""
_template: str = str(ollama_model_info.get("template", "") or "")
return "tools" in _template.lower()

def _get_max_tokens(self, ollama_model_info: dict) -> Optional[int]:
_model_info: dict = ollama_model_info.get("model_info", {})

for k, v in _model_info.items():
if "context_length" in k:
return v
return None

def get_model_info(self, model: str) -> ModelInfo:
"""
curl http://localhost:11434/api/show -d '{
"name": "mistral"
}'
"""
if model.startswith("ollama/") or model.startswith("ollama_chat/"):
model = model.split("/", 1)[1]
api_base = get_secret_str("OLLAMA_API_BASE") or "http://localhost:11434"

try:
response = litellm.module_level_client.post(
url=f"{api_base}/api/show",
json={"name": model},
)
except Exception as e:
raise Exception(
f"OllamaError: Error getting model info for {model}. Set Ollama API Base via `OLLAMA_API_BASE` environment variable. Error: {e}"
)

model_info = response.json()

_max_tokens: Optional[int] = self._get_max_tokens(model_info)

return ModelInfo(
key=model,
litellm_provider="ollama",
mode="chat",
supported_openai_params=self.get_supported_openai_params(),
supports_function_calling=self._supports_function_calling(model_info),
input_cost_per_token=0.0,
output_cost_per_token=0.0,
max_tokens=_max_tokens,
max_input_tokens=_max_tokens,
max_output_tokens=_max_tokens,
)


# ollama wants plain base64 jpeg/png files as images. strip any leading dataURI
Expand Down Expand Up @@ -125,11 +344,7 @@ def get_ollama_response(
url=f"{url}", json={**data, "stream": stream}, timeout=litellm.request_timeout
)
if response.status_code != 200:
raise OllamaError(
status_code=response.status_code,
message=response.text,
headers=dict(response.headers),
)
raise OllamaError(status_code=response.status_code, message=response.text)

## LOGGING
logging_obj.post_call(
Expand Down Expand Up @@ -190,9 +405,7 @@ def ollama_completion_stream(url, data, logging_obj):
try:
if response.status_code != 200:
raise OllamaError(
status_code=response.status_code,
message=str(response.read()),
headers=response.headers,
status_code=response.status_code, message=response.read()
)

streamwrapper = litellm.CustomStreamWrapper(
Expand Down Expand Up @@ -253,9 +466,7 @@ async def ollama_async_streaming(url, data, model_response, encoding, logging_ob
) as response:
if response.status_code != 200:
raise OllamaError(
status_code=response.status_code,
message=str(await response.aread()),
headers=dict(response.headers),
status_code=response.status_code, message=await response.aread()
)

streamwrapper = litellm.CustomStreamWrapper(
Expand Down Expand Up @@ -325,11 +536,7 @@ async def ollama_acompletion(

if resp.status != 200:
text = await resp.text()
raise OllamaError(
status_code=resp.status,
message=text,
headers=dict(resp.headers),
)
raise OllamaError(status_code=resp.status, message=text)

## LOGGING
logging_obj.post_call(
Expand Down Expand Up @@ -440,11 +647,7 @@ async def ollama_aembeddings(

if response.status != 200:
text = await response.text()
raise OllamaError(
status_code=response.status,
message=text,
headers=dict(response.headers),
)
raise OllamaError(status_code=response.status, message=text)

response_json = await response.json()

Expand Down
12 changes: 0 additions & 12 deletions litellm/llms/ollama/common_utils.py

This file was deleted.

Loading
Loading