Skip to content

BioMeDS/torchio

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

TorchIO logo

Tools like TorchIO are a symptom of the maturation of medical AI research using deep learning techniques.

Jack Clark, Policy Director at OpenAI (link).


Package PyPI downloads PyPI version Conda version
CI Tests status Linting status Documentation status Coverage status
Code Code quality Code maintainability pre-commit
Tutorials Google Colab
Community Slack Twitter Twitter YouTube Contributors

Progressive artifacts

Augmentation


Original Random blur
Original Random blur
Random flip Random noise
Random flip Random noise
Random affine transformation Random elastic transformation
Random affine transformation Random elastic transformation
Random bias field artifact Random motion artifact
Random bias field artifact Random motion artifact
Random spike artifact Random ghosting artifact
Random spike artifact Random ghosting artifact

Queue

(Queue for patch-based training)


TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

This package has been greatly inspired by NiftyNet, which is not actively maintained anymore.

Credits

If you like this repository, please click on Star!

If you use this package for your research, please cite our paper:

F. PΓ©rez-GarcΓ­a, R. Sparks, and S. Ourselin. TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Computer Methods and Programs in Biomedicine (June 2021), p. 106236. ISSN: 0169-2607.doi:10.1016/j.cmpb.2021.106236.

BibTeX entry:

@article{perez-garcia_torchio_2021,
    title = {TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning},
    journal = {Computer Methods and Programs in Biomedicine},
    pages = {106236},
    year = {2021},
    issn = {0169-2607},
    doi = {https://doi.org/10.1016/j.cmpb.2021.106236},
    url = {https://www.sciencedirect.com/science/article/pii/S0169260721003102},
    author = {P{\'e}rez-Garc{\'i}a, Fernando and Sparks, Rachel and Ourselin, S{\'e}bastien},
}

This project is supported by the following institutions:

Getting started

See Getting started for installation instructions and a Hello, World! example.

Longer usage examples can be found in the tutorials.

All the documentation is hosted on Read the Docs.

Please open a new issue if you think something is missing.

Contributors

Thanks goes to all these people (emoji key):


Fernando PΓ©rez-GarcΓ­a

πŸ’» πŸ“–

valabregue

πŸ€” πŸ‘€ πŸ’» πŸ’¬

GFabien

πŸ’» πŸ‘€ πŸ€”

G.Reguig

πŸ’»

Niels Schurink

πŸ’»

Ibrahim Hadzic

πŸ›

ReubenDo

πŸ€”

Julian Klug

πŸ€”

David VΓΆlgyes

πŸ€” πŸ’»

Jean-Christophe Fillion-Robin

πŸ“–

Suraj Pai

πŸ€”

Ben Darwin

πŸ€”

Oeslle Lucena

πŸ›

Soumick Chatterjee

πŸ’»

neuronflow

πŸ“–

Jan Witowski

πŸ“–

Derk Mus

πŸ“– πŸ’» πŸ›

Christian Herz

πŸ›

Cory Efird

πŸ’» πŸ›

Esteban Vaca C.

πŸ›

Ray Phan

πŸ›

Akis Linardos

πŸ› πŸ’»

Nina Montana-Brown

πŸ“– πŸš‡

fabien-brulport

πŸ›

malteekj

πŸ›

Andres Diaz-Pinto

πŸ›

Sarthak Pati

πŸ“¦

GabriellaKamlish

πŸ›

Tyler Spears

πŸ›

DaGuT

πŸ“–

Xiangyu Zhao

πŸ›

siahuat0727

πŸ“– πŸ›

Svdvoort

πŸ’»

Albans98

πŸ’»

Matthew T. Warkentin

πŸ’»

glupol

πŸ›

ramonemiliani93

πŸ“– πŸ›

Justus Schock

πŸ’» πŸ›

Stefan Milorad Radonjić

πŸ›

Sajan Gohil

πŸ›

Ikko Ashimine

πŸ“–

laynr

πŸ“–

Omar U. Espejel

πŸ”Š

James Butler

πŸ›

res191

πŸ”

nengwp

πŸ› πŸ“–

susanveraclarke

🎨

nepersica

πŸ›

Sebastian Penhouet

πŸ€”

Bigsealion

πŸ›

Dženan Zukić

πŸ‘€

vasl12

βœ… πŸ›

François Rousseau

πŸ›

snavalm

πŸ’»

Jacob Reinhold

πŸ’»

Hsu

πŸ›

snipdome

πŸ›

SmallY

πŸ›

guigautier

πŸ€”

AyedSamy

πŸ›

J. Miguel Valverde

πŸ€” πŸ’»

JosΓ© Guilherme Almeida

πŸ€”

Asim Usman

πŸ›

cbri92

πŸ›

This project follows the all-contributors specification. Contributions of any kind welcome!

About

Medical imaging toolkit for deep learning

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%