conda create -n brats python=3.8
pip install -r requirements.txt
- Download the BraTS2023 Adult Glioma dataset and put it on the
dataset/
folder, so it will contain the following:
├── dataset
│ ├── ASNR-MICCAI-BraTS2023-GLI-Challenge-TrainingData
│ ├── ASNR-MICCAI-BraTS2023-GLI-Challenge-ValidationData
│ ├── brats21_folds.json
│ ├── BraTS2023_2017_GLI_Mapping.xlsx
- Run
preprocessing.py
, but please check thesource_directory
andtarget_directory
variables to make sure everything is correct.
conda activate brats-gli
python preprocessing.py
For training a MedNeXt
model, you can run the following command (but you may need to configure your wandb account beforehand):
python mednext_train.py
To calculate 5-fold CV Dice and HD95, we need to do two things;
- get predictions from 5-fold (
cv-get-predictions.py
). - run post-processing and evaluation (
cv-postprocessing-and-eval.py
). - The idea of separating
cv-get-predictions.py
andcv-postprocessing-and-eval.py
is to allow us to tune post-processing faster.