Skip to content

Commit

Permalink
Compute Shape Values working.
Browse files Browse the repository at this point in the history
Axis and EulerAxis are not verified yet.

Signed-off-by: Michael Jackson <mike.jackson@bluequartz.net>
  • Loading branch information
imikejackson committed Dec 17, 2024
1 parent 2fa4167 commit 99ec075
Show file tree
Hide file tree
Showing 3 changed files with 149 additions and 220 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -12,99 +12,6 @@ using namespace nx::core;

namespace
{
constexpr float64 k_ScaleFactor = 1.0;
constexpr usize k_00 = 0;
constexpr usize k_01 = 1;
constexpr usize k_02 = 2;

constexpr usize k_10 = 3;
constexpr usize k_11 = 4;
constexpr usize k_12 = 5;

constexpr usize k_20 = 6;
constexpr usize k_21 = 7;
constexpr usize k_22 = 8;

// -----------------------------------------------------------------------------
/**
* @brief This function will calculate the volume and centroid for 8 sub tetrahedrons that are generated
* from the triangle given by the "verts" and a centroid point give by "centroid"
* @tparam T
* @param verts The 3 Vertices of the triangle
* @param centroid Another point in space that represents the centroid of the feature that the triangle belongs to
* @param tetInfo The array of TetInfo data which is the volume and centroid of each sub-tetrahedron that is formed.
*/
template <typename T>
void FindTetrahedronInfo(const std::array<nx::core::Point3Df, 3>& verts, const std::array<T, 3>& centroid, std::array<T, 32>& tetInfo)
{
// clang-format off
std::array<float64, 30> coords = {verts[0][0], verts[0][1], verts[0][2], // V0
verts[1][0], verts[1][1], verts[1][2], // V1
verts[2][0], verts[2][1], verts[2][2], // V2

centroid[0], centroid[1], centroid[2], // Centroid Vertex

0.5 * (verts[0][0] + centroid[0]), 0.5 * (verts[0][1] + centroid[1]), 0.5 * (verts[0][2] + centroid[2]), // Average of V0 and Centroid
0.5 * (verts[1][0] + centroid[0]), 0.5 * (verts[1][1] + centroid[1]), 0.5 * (verts[1][2] + centroid[2]), // Average of V1 and Centroid
0.5 * (verts[2][0] + centroid[0]), 0.5 * (verts[2][1] + centroid[1]), 0.5 * (verts[2][2] + centroid[2]), // Average of V2 and Centroid

0.5 * (verts[0][0] + verts[1][0]), 0.5 * (verts[0][1] + verts[1][1]), 0.5 * (verts[0][2] + verts[1][2]), // Average of V0 & V1 Distance
0.5 * (verts[1][0] + verts[2][0]), 0.5 * (verts[1][1] + verts[2][1]), 0.5 * (verts[1][2] + verts[2][2]), // Average of V1 & V2 Distance
0.5 * (verts[2][0] + verts[0][0]), 0.5 * (verts[2][1] + verts[0][1]), 0.5 * (verts[2][2] + verts[0][2]) // Average of V2 & V0 Distance
};

// Create 8 Tetrahedrons
std::array<int32, 32> tets = {
4, 5, 6, 3,
0, 7, 9, 4,
1, 8, 7, 5,
2, 9, 8, 6,
7, 5, 6, 4,
6, 9, 7, 4,
6, 5, 7, 8,
7, 9, 6, 8
};
// clang-format on

using Point3DType = Point3D<T>;
// Loop over each Tetrahedron
for(usize iter = 0; iter < 8; iter++)
{
usize i0 = 4 * iter + 0;
usize i1 = 4 * iter + 1;
usize i2 = 4 * iter + 2;
usize i3 = 4 * iter + 3;
// Create the 4 Vertices of the sub-tetrahedron
Point3DType a(coords[3 * tets[i0] + 0], coords[3 * tets[i0] + 1], coords[3 * tets[i0] + 2]);
Point3DType b(coords[3 * tets[i1] + 0], coords[3 * tets[i1] + 1], coords[3 * tets[i1] + 2]);
Point3DType c(coords[3 * tets[i2] + 0], coords[3 * tets[i2] + 1], coords[3 * tets[i2] + 2]);
Point3DType d(coords[3 * tets[i3] + 0], coords[3 * tets[i3] + 1], coords[3 * tets[i3] + 2]);

// The volume of the tetrahedron can be calculated through V= 1/6 |M| (where M is the volume matrix)
// v1 = b-a, v2 = c-a, v3 = d-a
// | v1x v2x v3x
// M = | v1y v2y v3y
// | v1z v2z v3z

// clang-format off
std::array<T, 9> volumeMatrix = {b[0] - a[0], c[0] - a[0], d[0] - a[0],
b[1] - a[1], c[1] - a[1], d[1] - a[1],
b[2] - a[2], c[2] - a[2], d[2] - a[2]};

// det(M) = v1x(v2y*v3z - v2z*v3y) - v1y(v2x*v3z - v3x*v2z) + v1z(v2x*v3y - v3x*v2y)
T determinant = (volumeMatrix[k_00] * (volumeMatrix[k_11] * volumeMatrix[k_22] - volumeMatrix[k_12] * volumeMatrix[k_21])) -
(volumeMatrix[k_10] * (volumeMatrix[k_01] * volumeMatrix[k_22] - volumeMatrix[k_02] * volumeMatrix[k_21])) +
(volumeMatrix[k_20] * (volumeMatrix[k_01] * volumeMatrix[k_12] - volumeMatrix[k_02] * volumeMatrix[k_11]));
// clang-format on

tetInfo[4 * iter + 0] = std::abs((determinant / 6.0f)); // The final volume of the tetrahedron
// Encode the centroid of the sub-tetrahedron
tetInfo[4 * iter + 1] = 0.25 * (a[0] + b[0] + c[0] + d[0]);
tetInfo[4 * iter + 2] = 0.25 * (a[1] + b[1] + c[1] + d[1]);
tetInfo[4 * iter + 3] = 0.25 * (a[2] + b[2] + c[2] + d[2]);
}
}

using TriStore = AbstractDataStore<INodeGeometry2D::SharedFaceList::value_type>;
using VertsStore = AbstractDataStore<INodeGeometry0D::SharedVertexList::value_type>;

Expand All @@ -123,127 +30,143 @@ inline std::array<nx::core::Point3Df, 3> GetFaceCoordinates(usize triangleId, co

} // namespace

// -----------------------------------------------------------------------------
ComputeTriangleGeomShapes::ComputeTriangleGeomShapes(DataStructure& dataStructure, const IFilter::MessageHandler& mesgHandler, const std::atomic_bool& shouldCancel,
ComputeTriangleGeomShapesInputValues* inputValues)
: m_DataStructure(dataStructure)
, m_InputValues(inputValues)
, m_ShouldCancel(shouldCancel)
, m_MessageHandler(mesgHandler)
{
}

// -----------------------------------------------------------------------------
ComputeTriangleGeomShapes::~ComputeTriangleGeomShapes() noexcept = default;

// -----------------------------------------------------------------------------
const std::atomic_bool& ComputeTriangleGeomShapes::getCancel()
{
return m_ShouldCancel;
}

// -----------------------------------------------------------------------------
Result<> ComputeTriangleGeomShapes::operator()()
{
findMoments();
findAxes();
findAxisEulers();

return {};
}

// -----------------------------------------------------------------------------
void ComputeTriangleGeomShapes::findMoments()
{
using MeshIndexType = IGeometry::MeshIndexType;
// using SharedVertexListType = IGeometry::SharedVertexList;

const auto& triangleGeom = m_DataStructure.getDataRefAs<TriangleGeom>(m_InputValues->TriangleGeometryPath);
const TriStore& triangleList = triangleGeom.getFacesRef().getDataStoreRef();
const VertsStore& verts = triangleGeom.getVerticesRef().getDataStoreRef();

const auto& faceLabels = m_DataStructure.getDataRefAs<Int32Array>(m_InputValues->FaceLabelsArrayPath);
const auto& centroids = m_DataStructure.getDataRefAs<Float32Array>(m_InputValues->CentroidsArrayPath);
const auto& volumes = m_DataStructure.getDataRefAs<Float32Array>(m_InputValues->VolumesArrayPath);
// Calculated Arrays
auto& omega3S = m_DataStructure.getDataRefAs<Float32Array>(m_InputValues->Omega3sArrayPath);

usize numFaces = faceLabels.getNumberOfTuples();
usize numFeatures = centroids.getNumberOfTuples();
m_FeatureMoments.resize(numFeatures * 6, 0.0);

std::array<float32, 3> centroid = {0.0F, 0.0F, 0.0F};
std::array<float32, 32> tetInfo = {0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F,
0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F};
// std::array<usize, 3> vertIds = {0, 0, 0};
nx::core::Point3Df centroid = {0.0F, 0.0F, 0.0F};

// Loop over all triangle faces
for(usize i = 0; i < numFaces; i++)
{
// Get the indices to the 3 vertices of the triangle
// triangleGeom.getFacePointIds(i, vertIds); // This line is SLOW!!!
using Matrix3x3 = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>;
// Theoretical perfect Sphere value of Omega-3. Each calculated Omega-3
// will be normalized using this value;
const float64 k_Sphere = (2000.0 * M_PI * M_PI) / 9.0;

std::array<nx::core::Point3Df, 3> vertCoords = GetFaceCoordinates(i, verts, triangleList);
// define the canonical C matrix
double aa = 1.0 / 60.0;
double bb = aa / 2.0;
// clang-format off
Matrix3x3 C;
C << aa, bb, bb, bb, aa, bb, bb, bb, aa;

// and the identity matrix
aa = 1.0;
bb = 0.0;
Matrix3x3 ID;
ID << aa, bb, bb, bb, aa, bb, bb, bb, aa;

// The C-Prime matrix
Matrix3x3 CC;
CC << -0.50000000, 0.50000000, 0.50000000,
0.50000000, -0.50000000, 0.50000000,
0.50000000, 0.50000000, -0.50000000;
// clang-format on

// Loop over each FaceLabel, which is basically the pair of "Feature Id" for the triangle
for(usize j = 0; j < 2; j++)
// Loop over each "Feature" which is the number of tuples in the "Centroids" array
// We could parallelize over the features?
for(usize featureId = 1; featureId < numFeatures; featureId++)
{
if(m_ShouldCancel)
{
// Flips the winding, Assuming the triangle winding was correct in the first place.
if(j == 1)
return;
}
double Vol = 0.0;
// define the accumulator arrays
Matrix3x3 Cacc;
Cacc << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;

// Get the centroid for the feature
centroid[0] = centroids[3 * featureId + 0];
centroid[1] = centroids[3 * featureId + 1];
centroid[2] = centroids[3 * featureId + 2];

// for each triangle we need the transformation matrix A defined by the three points as columns
// Loop over all triangle faces
int32_t tCount = 0;
for(usize i = 0; i < numFaces; i++)
{
if(faceLabels[2 * i] != featureId && faceLabels[2 * i + 1] != featureId)
{
std::swap(vertCoords[2], vertCoords[1]);
continue;
}
int32 gnum = faceLabels[2 * i + j];
if(gnum > 0)
{
// Get the centroid for the feature
centroid[0] = centroids[3 * gnum + 0];
centroid[1] = centroids[3 * gnum + 1];
centroid[2] = centroids[3 * gnum + 2];
// Generate the volumes for the 8 sub-tetrahedrons
FindTetrahedronInfo<float32>(vertCoords, centroid, tetInfo);

// Loop over those 8 sub-tetrahedrons
for(usize iter = 0; iter < 8; iter++)
{
tCount++;
usize compIndex = (faceLabels[2 * i] == featureId ? 0 : 1);
std::array<nx::core::Point3Df, 3> vertCoords = GetFaceCoordinates(i, verts, triangleList);

// Compute the distance between the feature's centroid and the centroid of
// the current sub-tetrahedron.
float64 xdist = (tetInfo[4 * iter + 1] - centroids[gnum * 3 + 0]);
float64 ydist = (tetInfo[4 * iter + 2] - centroids[gnum * 3 + 1]);
float64 zdist = (tetInfo[4 * iter + 3] - centroids[gnum * 3 + 2]);

// Compute the second order moments
auto xx = static_cast<float32>((ydist * ydist) + (zdist * zdist));
auto yy = static_cast<float32>((xdist * xdist) + (zdist * zdist));
auto zz = static_cast<float32>((xdist * xdist) + (ydist * ydist));
auto xy = static_cast<float32>(xdist * ydist);
auto yz = static_cast<float32>(ydist * zdist);
auto xz = static_cast<float32>(xdist * zdist);

// Sum the volume contributions into the "Feature Moments" array
m_FeatureMoments[gnum * 6 + 0] = m_FeatureMoments[gnum * 6 + 0] + (xx * tetInfo[4 * iter + 0]);
m_FeatureMoments[gnum * 6 + 1] = m_FeatureMoments[gnum * 6 + 1] + (yy * tetInfo[4 * iter + 0]);
m_FeatureMoments[gnum * 6 + 2] = m_FeatureMoments[gnum * 6 + 2] + (zz * tetInfo[4 * iter + 0]);
m_FeatureMoments[gnum * 6 + 3] = m_FeatureMoments[gnum * 6 + 3] + (xy * tetInfo[4 * iter + 0]);
m_FeatureMoments[gnum * 6 + 4] = m_FeatureMoments[gnum * 6 + 4] + (yz * tetInfo[4 * iter + 0]);
m_FeatureMoments[gnum * 6 + 5] = m_FeatureMoments[gnum * 6 + 5] + (xz * tetInfo[4 * iter + 0]);
}
}
}
}
const nx::core::Point3Df& a = vertCoords[0] - centroid;
const nx::core::Point3Df& b = (compIndex == 0 ? vertCoords[1] : vertCoords[2]) - centroid;
const nx::core::Point3Df& c = (compIndex == 0 ? vertCoords[2] : vertCoords[1]) - centroid;

const float64 k_Sphere = (2000.0 * M_PI * M_PI) / 9.0;
for(usize i = 1; i < numFeatures; i++)
{
Matrix3x3 A;
A << a[0], b[0], c[0], a[1], b[1], c[1], a[2], b[2], c[2];

m_FeatureMoments[i * 6 + 3] = -m_FeatureMoments[i * 6 + 3];
m_FeatureMoments[i * 6 + 4] = -m_FeatureMoments[i * 6 + 4];
m_FeatureMoments[i * 6 + 5] = -m_FeatureMoments[i * 6 + 5];
auto u200 = static_cast<float32>((m_FeatureMoments[i * 6 + 1] + m_FeatureMoments[i * 6 + 2] - m_FeatureMoments[i * 6 + 0]) / 2.0f);
auto u020 = static_cast<float32>((m_FeatureMoments[i * 6 + 0] + m_FeatureMoments[i * 6 + 2] - m_FeatureMoments[i * 6 + 1]) / 2.0f);
auto u002 = static_cast<float32>((m_FeatureMoments[i * 6 + 0] + m_FeatureMoments[i * 6 + 1] - m_FeatureMoments[i * 6 + 2]) / 2.0f);
auto u110 = static_cast<float32>(-m_FeatureMoments[i * 6 + 3]);
auto u011 = static_cast<float32>(-m_FeatureMoments[i * 6 + 4]);
auto u101 = static_cast<float32>(-m_FeatureMoments[i * 6 + 5]);
auto o3 = static_cast<float64>((u200 * u020 * u002) + (2.0f * u110 * u101 * u011) - (u200 * u011 * u011) - (u020 * u101 * u101) - (u002 * u110 * u110));
float64 vol5 = pow(volumes[i], 5.0);
float64 omega3 = vol5 / o3;
omega3 = omega3 / k_Sphere;
if(omega3 > 1)
{
omega3 = 1.0;
}
if(vol5 == 0.0)
{
omega3 = 0.0;
float64 dA = A.determinant();

Cacc = (Cacc + dA * (A * (C * (A.transpose())))).eval();
Vol += (dA / 6.0f); // accumulate the volumes
}
omega3S[i] = static_cast<float32>(omega3);

Cacc = (Cacc / Vol).eval();
Matrix3x3 Cinertia = ID * Cacc.trace() - Cacc;
// extract the moments from the inertia tensor
Eigen::Vector3d e(Cinertia(0, 0), Cinertia(1, 1), Cinertia(2, 2));
auto sols = CC * e;
omega3S[featureId] = static_cast<float32>(((Vol * Vol) / sols.prod()) / k_Sphere);

m_FeatureMoments[featureId * 6 + 0] = sols[0];
m_FeatureMoments[featureId * 6 + 1] = sols[1];
m_FeatureMoments[featureId * 6 + 2] = sols[2];
m_FeatureMoments[featureId * 6 + 3] = -Cinertia(0, 1);
m_FeatureMoments[featureId * 6 + 4] = -Cinertia(0, 2);
m_FeatureMoments[featureId * 6 + 5] = -Cinertia(1, 2);
}
}

// -----------------------------------------------------------------------------
void ComputeTriangleGeomShapes::findAxes()
{
// float64 I1 = 0.0, I2 = 0.0, I3 = 0.0;
// float64 a = 0.0, b = 0.0, c = 0.0, d = 0.0, f = 0.0, g = 0.0, h = 0.0;
// float64 rsquare = 0.0, r = 0.0, theta = 0.0;
// float64 A = 0.0, B = 0.0, C = 0.0;
// float64 r1 = 0.0, r2 = 0.0, r3 = 0.0;
// float32 bovera = 0.0f, covera = 0.0f;
// float64 value = 0.0;

constexpr float64 k_ScaleFactor = 1.0;
const Float32Array& centroids = m_DataStructure.getDataRefAs<Float32Array>(m_InputValues->CentroidsArrayPath);

auto& axisLengths = m_DataStructure.getDataRefAs<Float32Array>(m_InputValues->AxisLengthsArrayPath);
Expand All @@ -255,6 +178,10 @@ void ComputeTriangleGeomShapes::findAxes()

for(usize i = 1; i < numFeatures; i++)
{
if(m_ShouldCancel)
{
return;
}
float64 ixx = m_FeatureMoments[i * 6 + 0];
float64 iyy = m_FeatureMoments[i * 6 + 1];
float64 izz = m_FeatureMoments[i * 6 + 2];
Expand Down Expand Up @@ -344,6 +271,10 @@ void ComputeTriangleGeomShapes::findAxisEulers()

for(usize i = 1; i < numFeatures; i++)
{
if(m_ShouldCancel)
{
return;
}
float64 ixx = m_FeatureMoments[i * 6 + 0];
float64 iyy = m_FeatureMoments[i * 6 + 1];
float64 izz = m_FeatureMoments[i * 6 + 2];
Expand Down Expand Up @@ -470,31 +401,3 @@ void ComputeTriangleGeomShapes::findAxisEulers()
}
}

// -----------------------------------------------------------------------------
ComputeTriangleGeomShapes::ComputeTriangleGeomShapes(DataStructure& dataStructure, const IFilter::MessageHandler& mesgHandler, const std::atomic_bool& shouldCancel,
ComputeTriangleGeomShapesInputValues* inputValues)
: m_DataStructure(dataStructure)
, m_InputValues(inputValues)
, m_ShouldCancel(shouldCancel)
, m_MessageHandler(mesgHandler)
{
}

// -----------------------------------------------------------------------------
ComputeTriangleGeomShapes::~ComputeTriangleGeomShapes() noexcept = default;

// -----------------------------------------------------------------------------
const std::atomic_bool& ComputeTriangleGeomShapes::getCancel()
{
return m_ShouldCancel;
}

// -----------------------------------------------------------------------------
Result<> ComputeTriangleGeomShapes::operator()()
{
findMoments();
findAxes();
findAxisEulers();

return {};
}
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ class ORIENTATIONANALYSIS_EXPORT ComputeTriangleGeomShapes

std::vector<double> m_FeatureMoments;
std::vector<double> m_FeatureEigenVals;

void findMoments();
void findAxes();
void findAxisEulers();
Expand Down
Loading

0 comments on commit 99ec075

Please sign in to comment.