Enhancing Pedestrian Route Choice Models through Maximum-Entropy Deep Inverse Reinforcement Learning with Individual Covariates (MEDIRL-IC): This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. You can access it via IEEE Xplore.
This project is a collection of algorithms and models dedicated to "Deep Inverse Reinforcement Learning with Individual Covariates" in the context of pedestrian route choice. Developed by Boyang Li at SUPD, Peking University.
- A_star: Implementation of the A* algorithm.
- DTW: Initial setup and configurations for DTW (Dynamic Time Warping).
- data: Contains datasets, data preprocessing scripts, and other data-related utilities.
- model: Stores model parameters and configuration files.
- plot: Scripts for generating visualizations and related plots.
- realGrid: Urban grid classes and methods representing real-world scenarios.
- img: Images utilized primarily for the project's README documentation.
.gitignore
: Configuration file for Git to determine which files and directories to ignore before committing.README.md
: Provides an overview and documentation for the project.img_utils.py
: Utility functions related to image processing.tf_utils.py
: Utility functions related to TensorFlow operations.utils.py
: General utility functions for the project.
causal_data.py
: Script for handling causal data.causal_learn_pc_detailed.py
: Detailed learning scripts for the PC algorithm in causal inference.causal_plot_detailed.ipynb
: Jupyter notebook for detailed plotting and visualization of causal data.
deep_irl_be.py
: Deep IRL only considered built environment.deep_irl_realworld.py
: Implementation of deep IRL with IC for real-world scenarios.demo_deepirl_be.py
: Demonstration script for deep IRL backend.demo_deepirl_realworld.py
: Demonstration script for deep IRL with IC in real-world scenarios.
demo_recursive_logit.py
: Demonstration script for the recursive logit model.recursive_logit.py
: Implementation of the recursive logit model.test_recursive_logit.py
: Testing script for the recursive logit model.
dnn_psl.py
: Script related to the deep neural network model.test_dnn_psl.py
: Testing script for the DNN model.
evaluate_traj_IRL.py
: Evaluation scripts for IRL trajectories.evaluate_traj_psl.py
: Evaluation scripts for PSL trajectories.traj_contrast.py
: Scripts for trajectory contrast analysis.traj_contrast_psl.py
: Scripts for PSL trajectory contrast analysis.traj_policy_logll.py
: Scripts related to policy log likelihood for trajectories.trajectory.ipynb
: Jupyter notebook for trajectory functions.trajectory.py
: Scripts related to trajectory functions.
nshortest_path.ipynb
: Jupyter notebook related to the choice set of path-size logit model.
- Clone the repository.
- Install necessary dependencies.
- Run the desired scripts or models.
- Fiona: 1.8.13
- GDAL: 3.0.4
- geopandas: 0.8.2
- matplotlib: 3.0.3
- networkx: 2.4
- numpy: 1.14.5+mkl
- pandas: 0.25.3
- pyproj: 2.5.0
- Rtree: 0.9.3
- scipy: 1.4.1
- seaborn: 0.9.1
- Shapely: 1.6.4.post2
- tensorflow: 0.12.1
Due to individual privacy concerns, we only provide geographical data for the training region along with a limited set of encrypted individual trajectory data.
This project is licensed under the MIT License - see the LICENSE file for details.
Li, B., & Zhang, W. (2024). Enhancing Pedestrian Route Choice Models Through Maximum-Entropy Deep Inverse Reinforcement Learning With Individual Covariates (MEDIRL-IC). IEEE Transactions on Intelligent Transportation Systems, 1-18. https://doi.org/10.1109/TITS.2024.3457680
@ARTICLE{10689250,
author={Li, Boyang and Zhang, Wenjia},
journal={IEEE Transactions on Intelligent Transportation Systems},
title={Enhancing Pedestrian Route Choice Models Through Maximum-Entropy Deep Inverse Reinforcement Learning With Individual Covariates (MEDIRL-IC)},
year={2024},
pages={1-18},
keywords={Pedestrians; Analytical models; Decision making; Predictive models; Reinforcement learning; Biological system modeling; Trajectory; Deep inverse reinforcement learning; pedestrian route choice; causal discovery; cell phone signaling},
doi={10.1109/TITS.2024.3457680}
}