A curated list of resources including papers, comparitive results on standard datasets and relevant links pertaining to few-shot learning.
Contributions are welcome. If you have suggestions for new sections or valuable works to be included, please feel free to raise an issue and discuss in issue module.
[1] Multi-domain based FSL [Website]
-
Meta-Dataset: Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. "Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples." ICLR (2020). [pdf] [code].
-
SimpleCNAPS: Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, Leonid Sigal. "Improved Few-Shot Visual Classification." CVPR (2020). [pdf] [code].
-
SUR: Nikita Dvornik, Cordelia Schmid, and Julien Mairal. "Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification." ECCV (2020). [pdf] [code].
-
URT: Lu Liu, William L. Hamilton, Guodong Long, Jing Jiang, and Hugo Larochelle. "A Universal Representation Transformer Layer for Few-Shot Image Classification." ICLR(2021). [pdf][code].
-
FLUTE: Eleni Triantafillou, Hugo Larochelle, Richard Zemel, Vincent Dumoulin. "Learning a Universal Template for Few-shot Dataset Generalization." ICML(2021). [pdf].
-
URL: Wei-Hong Li, Xialei Liu, Hakan Bilen. "Universal Representation Learning from Multiple Domains for Few-shot Classification." ICCV(2021). [pdf].
-
ITA: Wei-Hong Li, Xialei Liu, Hakan Bilen. "Improving Task Adaptation for Cross-domain Few-shot Learning." arXiv(2021). [pdf].
-
LibFewShot: wenbin Li, Chuanqi Dong, Pinzhuo Tian, Tiexin Qin, Xuesong Yang, Ziyi Wang, Jing Huo, Yinghuan Shi, Lei Wang, Yang Gao, Jiebo Luo. "LibFewShot: A Comprehensive Library for Few-shot Learning." arXiv(2021). [pdf] [code].
<an emperical survey>
-
KIP: Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. "Dataset Meta-Learning from Kernel Ridge-Regression." ICLR(2021). [pdf] [code].
-
ICLR withdraw: Jialin Liu, Fei Chao, and Chih-Min Lin. "Task Level Data Augmentation for Meta-Learning." ICLR withdraw(2021). [pdf].
-
ICLR withdraw: Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, and Tom Goldstein. "Data Augmentation for Meta-Learning." ICLR withdraw(2021). [pdf].
-
ICLR reject: Xingjian Li, Haoyi Xiong, Haozhe An, Cheng-zhong Xu, and Dejing Dou. "XMixup: Efficient Transfer Learning with Auxiliary Samples by Cross-Domain Mixup." ICLR reject(2021). [pdf].
-
ICLR reject: Georgios Batzolis, Alberto Bernacchia, Da-shan Shiu, Michael Bromberg, and Alexandru Cioba. "Optimal allocation of data across training tasks in meta-learning." ICLR reject(2021). [pdf].
-
DC: Shuo Yang, Lu Liu, and Min Xu. "Free Lunch for Few-shot Learning: Distribution Calibration." ICLR oral(2021). [pdf] [code].
-
STARTUP: Cheng Perng Phoo, and Bharath Hariharan. "Self-training For Few-shot Transfer Across Extreme Task Differences." ICLR oral(2021). [pdf].
-
CPM: Mengye Ren, Michael Louis Iuzzolino, Michael Curtis Mozer, and Richard Zemel. "Wandering within a world: Online contextualized few-shot learning." ICLR(2021). [pdf].
-
THEORY: Simon Shaolei Du, Wei Hu, Sham M. Kakade, Jason D. Lee, and Qi Lei. "Few-Shot Learning via Learning the Representation, Provably." ICLR(2021). [pdf].
-
URT: Lu Liu, William L. Hamilton, Guodong Long, Jing Jiang, and Hugo Larochelle. "A Universal Representation Transformer Layer for Few-Shot Image Classification." ICLR(2021). [pdf].
-
COMET: Kaidi Cao, Maria Brbic, and Jure Leskovec. "Concept Learners for Few-Shot Learning." ICLR(2021). [pdf].
-
IEPT: Manli Zhang, Jianhong Zhang, Zhiwu Lu, Tao Xiang, Mingyu Ding, and Songfang Huang. "IEPT: Instance-Level and Episode-Level Pretext Tasks for Few-Shot Learning." ICLR(2021). [pdf].
-
IDLVQ-C: Kuilin Chen, and Chi-Guhn Lee. "Incremental few-shot learning via vector quantization in deep embedded space." ICLR(2021). [pdf].
<LVQ>
-
SLE: Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. "Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis." ICLR(2021). [pdf].
-
repurposing MAML: Namyeong Kwon, Hwidong Na, Gabriel Huang, and Simon Lacoste-Julien. "Repurposing Pretrained Models for Robust Out-of-domain Few-Shot Learning." ICLR(2021). [pdf] [code].
-
MELR: Nanyi Fei, Zhiwu Lu, Tao Xiang, and Songfang Huang. "MELR: Meta-Learning via Modeling Episode-Level Relationships for Few-Shot Learning." ICLR(2021). [pdf].
-
MB(Supervised): Mihir Prabhudesai, Shamit Lal, Darshan Patil, Hsiao-Yu Tung, Adam W Harley, and Katerina Fragkiadaki. "Disentangling 3D Prototypical Networks for Few-Shot Concept Learning." ICLR(2021). [pdf].
-
MetaNorm: Yingjun Du, Xiantong Zhen, Ling Shao, and Cees G. M. Snoek. "MetaNorm: Learning to Normalize Few-Shot Batches Across Domains." ICLR(2021). [pdf].
<Meta-Dataset>
-
ConstellationNet: Weijian Xu, yifan xu, Huaijin Wang, and Zhuowen Tu. "Constellation Nets for Few-Shot Learning." ICLR(2021). [pdf].
-
OVE PG GP + Cosine: Jake Snell, and Richard Zemel. "Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes." ICLR(2021). [pdf].
-
BOIL: Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, and Se-Young Yun. "BOIL: Towards Representation Change for Few-shot Learning." ICLR(2021). [pdf].
-
FBNet: Zhipeng Bao, Yu-Xiong Wang, and Martial Hebert. "Bowtie Networks: Generative Modeling for Joint Few-Shot Recognition and Novel-View Synthesis." ICLR(2021). [pdf].
<uncertainty quantification>
- DKT: Patacchiola, Massimiliano and Turner, Jack and Crowley, Elliot J and O'Boyle, Michael and Storkey, Amos. "Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels." NIPS (2020). [pdf] [code].
-
MABAS: Jaekyeom Kim, Hyoungseok Kim, and Gunhee Kim. "Model-Agnostic Boundary-Adversarial Sampling for Test-Time Generalization in Few-Shot learning." ECCV (2020). [pdf] [code].
-
centroid alignment: Arman Afrasiyabi, Jean-François Lalonde, and Christian Gagné. "Associative Alignment for Few-shot Image Classification." ECCV (2020). [pdf] [code].
-
TAFSSL: Moshe Lichtenstein, Prasanna Sattigeri, Rogerio Feris, Raja Giryes, and Leonid Karlinsky. "TAFSSL: Task-Adaptive Feature Sub-Space Learning for few-shot classification." ECCV (2020). [pdf].
<Semi-supervised>
<transductive>
-
BD-CSPN: Jinlu Liu, Liang Song, and Yongqiang Qin. "Prototype Rectification for Few-Shot Learning." ECCV (2020). [pdf].
<Meta-Dataset>
<transductive>
-
SSL-FSL: Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan. "When Does Self-supervision Improve Few-shot Learning?." ECCV (2020). [pdf].
<self-supervised>
-
IDA: Qing Liu, Orchid Majumder, Alessandro Achille, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto. "Incremental Few-Shot Meta-Learning via Indirect Discriminant Alignment." ECCV (2020). [pdf].
<Incremental>
-
LS-FSL: Shuo Wang, Jun Yue, Jianzhuang Liu, Qi Tian, and Meng Wang. "Large-Scale Few-Shot Learning via Multi-Modal Knowledge Discovery." ECCV (2020). [pdf].
-
SUR: Nikita Dvornik, Cordelia Schmid, and Julien Mairal. "Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification." ECCV (2020). [pdf] [code].
<Meta-Dataset>
-
LR-distill: Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B. Tenenbaum, and Phillip Isola. "Rethinking Few-shot Image Classification: A Good Embedding is All You Need?." ECCV (2020). [pdf] [code].
<self-supervised>
<Meta-Dataset>
-
E3BM: Yaoyao Liu, Bernt Schiele, and Qianru Sun. "An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning." ECCV (2020). [pdf] [code].
<transductive and inductive>
-
Data Design: Othman Sbai, Camille Couprie, and Mathieu Aubry. "Impact of base dataset design on few-shot image classification." ECCV (2020). [pdf] [code].
<base training set selection>
-
SEN: Van Nhan Nguyen, Sigurd Løkse, Kristoffer Wickstrøm, Michael Kampffmeyer, Davide Roverso, and Robert Jenssen. "SEN: A Novel Feature Normalization Dissimilarity Measure for Prototypical Few-Shot Learning Networks." ECCV (2020). [pdf].
-
EPNet: Pau Rodríguez, Issam Laradji, Alexandre Drouin, and Alexandre Lacoste. "Embedding Propagation: Smoother Manifold for Few-Shot Classification." ECCV (2020). [pdf] [code].
<Semi-supervised>
<transductive>
-
BSCD-FSL: Yunhui Guo, Noel C. Codella, Leonid Karlinsky, and James V. Codella, John R. Smith, Kate Saenko, Tajana Rosing, Rogerio Feris. "A Broader Study of Cross-Domain Few-Shot Learning." ECCV (2020). [pdf] [code].
<transductive and inductive>
-
DeepCaps-FSL: Fangyu Wu, Jeremy S.Smith, Wenjin Lu, Chaoyi Pang, and Bailing Zhang. "Attentive Prototype Few-shot Learning with Capsule Network-based Embedding." ECCV (2020). [pdf].
<transductive>
-
Neg-Cosine: Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Mingsheng Long, and Han Hu. "Negative Margin Matters: Understanding Margin in Few-shot Classification." ECCV (2020). [pdf] [code].
-
ProtoNet-EST: Tianshi Cao, Marc T Law, and Sanja Fidler. "A Theoretical Analysis of the Number of Shots in Few-Shot Learning." ICLR (2020). [pdf].
-
Transductive fine-tuning: Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. "A Baseline for Few-Shot Image Classification." ICLR (2020). [pdf].
<transductive>
-
LFT-FSL: Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, and Ming-Hsuan Yang. "Cross-Domain Few-Shot Classification via Learned Feature-Wise Transformation." ICLR (2020). [pdf] [code].
-
Meta-Dataset: Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. "Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples." ICLR (2020). [pdf] [code].
-
SIB: Shell Xu Hu, Pablo Garcia Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil Lawrence, and Andreas Damianou. "Empirical Bayes Transductive Meta-Learning with Synthetic Gradients." ICLR (2020). [pdf] [code].
<transductive>
-
Selection-FSL: Linjun Zhou, Peng Cui, Xu Jia, Shiqiang Yang, and Qi Tian. "Learning to Select Base Classes for Few-Shot Classification." CVPR (2020). [pdf].
<selection>
-
DSN: Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. "Adaptive Subspaces for Few-Shot Learning." CVPR (2020). [pdf] [code].
<Semi-supervised>
<supervised>
-
Few-Shot Open-set: Bo Liu, Hao Kang, Haoxiang Li, Gang Hua, and Nuno Vasconcelos. "Few-Shot Open-Set Recognition using Meta-Learning." CVPR (2020). [pdf].
<Weakly Supervised>
-
FEAT: Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. "Few-Shot Learning via Embedding Adaptation with Set-to-Set Functions." CVPR (2020). [pdf] [code].
<Transformer>
<inductive+transductive>
-
Simple CNAPS: Bateni, Peyman and Goyal, Raghav and Masrani, Vaden and Wood, Frank and Sigal, Leonid. "Improved Few-Shot Visual Classification." CVPR (2020). [pdf]
<Meta-Dataset>
- TaskNorm: Bronskill, John and Gordon, Jonathan and Requeima, James and Nowozin, Sebastian and Turner, Richard. "TaskNorm: Rethinking Batch Normalization for Meta-Learning." ICML (2020). [pdf] [code].
<Meta-Dataset>
-
Meta-Baseline: Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu, and Trevor Darrell. "A New Meta-Baseline for Few-Shot Learning" arxiv (2020). [pdf] [code].
<Meta-Dataset>
-
HPO: Saikia, Tonmoy and Brox, Thomas and Schmid, Cordelia. "Optimized Generic Feature Learning for Few-shot Classification across Domains." arxiv (2020). [pdf].
<Meta-Dataset>
-
CNAPS: Jaekyeom Kim, Hyoungseok Kim, and Gunhee Kim. "Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes." NIPS (2019). [pdf] [code].
<Meta-Dataset>
-
LST: Li, Xinzhe and Sun, Qianru and Liu, Yaoyao and Zhou, Qin and Zheng, Shibao and Chua, Tat-Seng and Schiele, Bernt. "Learning to self-train for semi-supervised few-shot classification." NIPS (2019). [pdf] [code].
Li, Aoxue and Luo, Tiange and Lu, Zhiwu and Xiang, Tao and Wang, Liwei. "Large-scale few-shot learning: Knowledge transfer with class hierarchy." CVPR(2019). [pdf] [code].
- miniImageNet: [link]
- tieredImageNet: [link]
- CUB: [link]
- Meta-Dataset: [link]
- CIFAR-FS: [link]
- FC100: [link]
There are two datasets, Categories: 17 and 102. [link]
There are several backbones:
Please click [here] for few-shot classification leaderboard.