Notebooks for Python for R Users: A Data Science Approach
https://nbviewer.jupyter.org/gist/decisionstats/2c99a54b0a61c082b8814c1e1466ad62
- Command Line
- Rodeo
- IDLE
- Jupyter
- Beaker
- Introductory Python https://nbviewer.jupyter.org/gist/decisionstats/ce2c16ee98abcf328177
- Strings, Lists and Tuples ,Dicts https://nbviewer.jupyter.org/gist/decisionstats/752ff727101cf6fc13225bd94eef358a
- variables in strings in python https://nbviewer.jupyter.org/gist/decisionstats/b9edb29ae440b45799f4e8d273269228
- Selecting Data in Pandas https://nbviewer.jupyter.org/gist/decisionstats/01fc540363f1081c5358
- numpy to pandas http://nbviewer.jupyter.org/gist/decisionstats/0a752d23e94708c6ddbaea478ecd9a81
- using re.sub for cleaning data https://nbviewer.jupyter.org/gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb
- using re.search and bool for searching for strings https://nbviewer.jupyter.org/gist/decisionstats/612116b1b8147cfb3808f5ac3c791eba
- using os package for file operations https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8c8f9166
- data transformations https://nbviewer.jupyter.org/gist/decisionstats/b818917b37807fa0ded41522928f26af
- Yelp with Beautiful Soup http://nbviewer.ipython.org/gist/decisionstats/3385dc84c39109f49b83
- Using PyCurl for Web Scraping
- Using Scrapy for Web Scraping
- Social Media Scraping
- Cricket Analysis 1
- MySQL
- PostGres https://nbviewer.jupyter.org/gist/decisionstats/d3cf51e145b581480a42348a8a16177e https://nbviewer.jupyter.org/gist/decisionstats/e283591acf4b51ba3c47e0bcfe331c05
- MongoDB
- HDFS
- Spark
- Using SQL for Groupby https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92
- Using For Loops https://nbviewer.jupyter.org/gist/decisionstats/ce2c16ee98abcf328177
- Apply and Lambda
- Converting data from one format to another ( str)
- Using grepl and gsub
- Subset of a DataFrame and List
- Conditional Manipulation
- Adult DataSet http://nbviewer.ipython.org/gist/decisionstats/4142e98375445c5e4174 and https://nbviewer.jupyter.org/gist/ajayteach/eed37262e64de78f4b209c5eb4a7ed23
- Big Diamonds Dataset
- Iris Dataset
- Basic Plots using MatplotLib
- Advanced Plots using Seaborn
- Data Visualization using GGPlot http://nbviewer.ipython.org/gist/decisionstats/df98ff9df42e7764d600
- Plots using Bokeh
- Anscombe Dataset http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
- Using Statsmodels (Boston Dataset) and Iris Dataset https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4dd08808af3d9c0869259cf6
- Using Pandas
- Using Scikit-learn
- Decision Trees https://nbviewer.jupyter.org/gist/decisionstats/8b762caa7b7deebb68e3f275daf02a9d
- Decision Tree with Weather Dataset from Rattle https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec1ae5b480
- Association Analysis
- Clustering Kmeans and Hierarchical kmeans https://nbviewer.jupyter.org/gist/decisionstats/a1554207a7583bad6f53825905e72289
- Neural Networks
- ROC Curves for Models
- ETS Models
- Arima Models
- Measuring Code Speed
- Measuring Code Performance
- Word Cloud (corpus,stopwords,association,tdm)
- Sentiment Analysis
- Diamonds Dataset http://nbviewer.ipython.org/gist/decisionstats/c1684daaeecf62dd4bf4
- StatisticsViews Data Science Tutorial http://www.statisticsviews.com/details/feature/8868901/A-Tutorial-on-Python.html
Spatial Data using Python http://sensitivecities.com/so-youd-like-to-make-a-map-using-python-EN.html#.V4EneVgrJ-8 http://nbviewer.jupyter.org/gist/urschrei/74c6223d9f6a5dea4e75 http://spatialdemography.org/essential-python-geospatial-libraries/
#Datasets http://www.gunviolencearchive.org/ Washington Post https://github.com/washingtonpost/data-police-shootings