-
Notifications
You must be signed in to change notification settings - Fork 80
Using a custom progress function
Filip Matzner edited this page Oct 26, 2017
·
4 revisions
The library supports the customization of the progress function.
The progress function is called internally after each iteration and is a good place where to put custom code for various purposes:
- custom control value output;
- intermediary computations (e.g. external validation of results every k steps)
- ...
The following code snippet is available from examples/sample-code-pfunc.cc and demonstrate how to override the default progress function in order to print out the cost of an iteration in ms, every 1000 iterations:
#include "cmaes.h"
#include <iostream>
using namespace libcmaes;
FitFunc rosenbrock = [](const double *x, const int N)
{
double val = 0.0;
for (int i=0;i<N-1;i++)
{
val += 100.0*pow((x[i+1]-x[i]*x[i]),2) + pow((x[i]-1.0),2);
}
return val;
};
ProgressFunc<CMAParameters<>,CMASolutions> select_time = [](const CMAParameters<> &cmaparams, const CMASolutions &cmasols)
{
if (cmasols.niter() % 1000 == 0)
std::cerr << cmasols.elapsed_last_iter() << std::endl;
return 0;
};
int main(int argc, char *argv[])
{
int dim = 100; // problem dimensions.
std::vector<double> x0(dim,10.0);
double sigma = 0.1;
//int lambda = 100; // offsprings at each generation.
CMAParameters<> cmaparams(x0,sigma);
//cmaparams.set_algo(BIPOP_CMAES);
CMASolutions cmasols = cmaes<>(rosenbrock,cmaparams,select_time);
std::cout << "best solution: " << cmasols << std::endl;
std::cout << "optimization took " << cmasols.elapsed_time() / 1000.0 << " seconds\n";
retrn cmasols.run_status();
}