Skip to content
This repository was archived by the owner on Jun 29, 2024. It is now read-only.

Advanced Level Tasks #21

Merged
merged 1 commit into from
May 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 33 additions & 0 deletions Naga Sathvik Rapelli/Hard Tasks/Task 10/task10.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
#1. Load the DataSet:
import seaborn as sns
iris_df = sns.load_dataset('iris')

#2. Exploratory Data Analysis (EDA):

print(iris_df.info())
print(iris_df.describe())
print(iris_df.head())

#3. Data Cleaning:

print(iris_df.isnull().sum())
print(iris_df.duplicated().sum())

#4. Aggregation:

species_mean = iris_df.groupby('species').mean()

#5. Visualizations:

import matplotlib.pyplot as plt
import seaborn as sns

sns.pairplot(iris_df, hue='species')
plt.show()

sns.heatmap(iris_df.corr(), annot=True, cmap='coolwarm')
plt.show()

#6. Correlation Calculations:

correlation_matrix = iris_df.corr()
52 changes: 52 additions & 0 deletions Naga Sathvik Rapelli/Hard Tasks/Task 11/task11.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
#1. Load the Dataset:

from sklearn.datasets import load_boston
boston = load_boston()

#2. Prepare the Data:

import pandas as pd

boston_df = pd.DataFrame(boston.data, columns=boston.feature_names)
boston_df['PRICE'] = boston.target

X = boston_df.drop('PRICE', axis=1)
y = boston_df['PRICE']

#3. Split the Data:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#4. Train the Model:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train, y_train)

#5. Evaluate the Model:

train_score = model.score(X_train, y_train)
print(f'Training Score: {train_score}')

test_score = model.score(X_test, y_test)
print(f'Testing Score: {test_score}')

#6. Plot Residuals:

import matplotlib.pyplot as plt

train_residuals = y_train - model.predict(X_train)
test_residuals = y_test - model.predict(X_test)

plt.figure(figsize=(10, 5))
plt.scatter(model.predict(X_train), train_residuals, label='Train Residuals', alpha=0.5)
plt.scatter(model.predict(X_test), test_residuals, label='Test Residuals', alpha=0.5)
plt.axhline(y=0, color='r', linestyle='--')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.title('Residual Plot')
plt.legend()
plt.show()
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
39 changes: 39 additions & 0 deletions Naga Sathvik Rapelli/Hard Tasks/Task 12/task12.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
from PIL import Image
import os

def compress_image(input_path, output_path, quality=60):
"""
Compresses an input image while maintaining quality.

Parameters:
input_path (str): Path to the input image file.
output_path (str): Path to save the compressed image file.
quality (int): Compression quality (0 - 95). Default is 60.

Returns:
None
"""
input_image = Image.open(input_path)

if input_image.mode == 'RGBA':
input_image = input_image.convert('RGB')

compressed_image = input_image.copy()
compressed_image.save(output_path, quality=quality)

print(f"Compressed image saved at: {output_path}")

def main():
input_path = 'C:/Users/SATHVIK/OneDrive/Desktop/Motive.png'
output_folder = 'compressed_images'
os.makedirs(output_folder, exist_ok=True)

quality = 60

# Compress image
output_path = os.path.join(output_folder, 'compressed_image.jpg')
compress_image(input_path, output_path, quality)

if __name__ == "__main__":
main()

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
28 changes: 28 additions & 0 deletions Naga Sathvik Rapelli/Hard Tasks/Task 9/task9.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
from PIL import Image
import os

def convert_image(input_path, output_path, output_format):
try:
with Image.open(input_path) as img:
img.save(output_path, format=output_format)
print(f"Image converted successfully: {input_path} -> {output_path}")
except Exception as e:
print(f"Error converting image: {e}")

def main(input_folder, output_folder, output_format):
if not os.path.exists(output_folder):
os.makedirs(output_folder)

for filename in os.listdir(input_folder):
input_path = os.path.join(input_folder, filename)

if os.path.isfile(input_path) and any(filename.lower().endswith(ext) for ext in ['.jpg', '.jpeg', '.png', '.bmp', '.gif']):
output_filename = os.path.splitext(filename)[0] + '.' + output_format.lower()
output_path = os.path.join(output_folder, output_filename)

convert_image(input_path, output_path, output_format)

input_folder = 'C:/Users/SATHVIK/OneDrive/Desktop'
output_folder = 'output_images'
output_format = 'PNG'
main(input_folder, output_folder, output_format)