13/07/2017: Please use the new repo pretrained-models.pytorch which includes inceptionv4 and inceptionresnetv2 with a nicer API.
This is a porting of tensorflow pretrained models made by Remi Cadene and Micael Carvalho. Special thanks to Moustapha Cissé. All models have been tested on Imagenet.
This work was inspired by inception-v3.torch.
Please install torchnet-vision.
luarocks install --server=http://luarocks.org/dev torchnet-vision
Models available:
- inceptionv3
- inceptionv4
- inceptionresnetv2
- resnet{18, 34, 50, 101, 152, 200}
- overfeat
- vggm
- vgg16
require 'image'
tnt = require 'torchnet'
vision = require 'torchnet-vision'
model = vision.models.inceptionresnetv2
net = model.load()
augmentation = tnt.transform.compose{
vision.image.transformimage.randomScale{
minSize = 299, maxSize = 350
},
vision.image.transformimage.randomCrop(299),
vision.image.transformimage.colorNormalize{
mean = model.mean, std = model.std
},
function(img) return img:float() end
}
net:evaluate()
output = net:forward(augmentation(image.lena()))
Currently available in this repo only On pytorch/vision maybe!
Models available:
- inceptionv4
- inceptionresnetv2
import torch
from inceptionv4.pytorch_load import inceptionv4
net = inceptionv4()
input = torch.autograd.Variable(torch.ones(1,3,299,299))
output = net.forward(input)
- Tensorflow
- Torch7
- PyTorch
- hdf5 for python3
- hdf5 for lua
In Tensorflow: Download tensorflow parameters and extract them in ./dump
directory.
python3 inceptionv4/tensorflow_dump.py
In Torch7 or PyTorch: Create the network, load the parameters, launch few tests and save the network in ./save
directory.
th inceptionv4/torch_load.lua
python3 inceptionv4/pytorch_load.py