forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
660a7fc
commit 9004314
Showing
3 changed files
with
290 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
from vllm import LLM, SamplingParams | ||
import ray | ||
|
||
prompts = [ | ||
"Beijing University of Posts and Telecommunications is", | ||
"MIT is", | ||
"CMU is", | ||
"THU is", | ||
"Before climbing the mountain, we should prepare" | ||
] | ||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=75) | ||
|
||
# llm = LLM("/media/airaiot/Workspace/triton_env/weights_repository/llama_7b_hf", tensor_parallel_size=2) | ||
llm = LLM("/vllm_workspace/weights/llama_7b_hf", tensor_parallel_size=2) | ||
|
||
outputs = llm.generate(prompts, sampling_params) | ||
|
||
# Print the outputs. | ||
for output in outputs: | ||
prompt = output.prompt | ||
generated_text = output.outputs[0].text | ||
print(f"Prompt: {prompt!r}, \n Generated text: {generated_text!r}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,260 @@ | ||
# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions | ||
# are met: | ||
# * Redistributions of source code must retain the above copyright | ||
# notice, this list of conditions and the following disclaimer. | ||
# * Redistributions in binary form must reproduce the above copyright | ||
# notice, this list of conditions and the following disclaimer in the | ||
# documentation and/or other materials provided with the distribution. | ||
# * Neither the name of NVIDIA CORPORATION nor the names of its | ||
# contributors may be used to endorse or promote products derived | ||
# from this software without specific prior written permission. | ||
# | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | ||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | ||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|
||
import asyncio | ||
import json | ||
import os | ||
import threading | ||
from typing import AsyncGenerator | ||
|
||
import numpy as np | ||
import triton_python_backend_utils as pb_utils | ||
from vllm.sampling_params import SamplingParams | ||
from vllm.engine.arg_utils import AsyncEngineArgs | ||
from vllm.engine.async_llm_engine import AsyncLLMEngine | ||
from vllm.utils import random_uuid | ||
|
||
_VLLM_ENGINE_ARGS_FILENAME = "model.json" | ||
|
||
|
||
class TritonPythonModel: | ||
def initialize(self, args): | ||
self.logger = pb_utils.Logger | ||
self.model_config = json.loads(args["model_config"]) | ||
|
||
# assert are in decoupled mode. Currently, Triton needs to use | ||
# decoupled policy for asynchronously forwarding requests to | ||
# vLLM engine. | ||
self.using_decoupled = pb_utils.using_decoupled_model_transaction_policy( | ||
self.model_config | ||
) | ||
assert ( | ||
self.using_decoupled | ||
), "vLLM Triton backend must be configured to use decoupled model transaction policy" | ||
|
||
engine_args_filepath = os.path.join( | ||
pb_utils.get_model_dir(), _VLLM_ENGINE_ARGS_FILENAME | ||
) | ||
assert os.path.isfile( | ||
engine_args_filepath | ||
), f"'{_VLLM_ENGINE_ARGS_FILENAME}' containing vllm engine args must be provided in '{pb_utils.get_model_dir()}'" | ||
with open(engine_args_filepath) as file: | ||
vllm_engine_config = json.load(file) | ||
|
||
# Create an AsyncLLMEngine from the config from JSON | ||
self.llm_engine = AsyncLLMEngine.from_engine_args( | ||
AsyncEngineArgs(**vllm_engine_config) | ||
) | ||
|
||
output_config = pb_utils.get_output_config_by_name( | ||
self.model_config, "text_output" | ||
) | ||
self.output_dtype = pb_utils.triton_string_to_numpy(output_config["data_type"]) | ||
|
||
# Counter to keep track of ongoing request counts | ||
self.ongoing_request_count = 0 | ||
|
||
# Starting asyncio event loop to process the received requests asynchronously. | ||
self._loop = asyncio.get_event_loop() | ||
self._loop_thread = threading.Thread( | ||
target=self.engine_loop, args=(self._loop,) | ||
) | ||
self._shutdown_event = asyncio.Event() | ||
self._loop_thread.start() | ||
|
||
def create_task(self, coro): | ||
""" | ||
Creates a task on the engine's event loop which is running on a separate thread. | ||
""" | ||
assert ( | ||
self._shutdown_event.is_set() is False | ||
), "Cannot create tasks after shutdown has been requested" | ||
|
||
return asyncio.run_coroutine_threadsafe(coro, self._loop) | ||
|
||
def engine_loop(self, loop): | ||
""" | ||
Runs the engine's event loop on a separate thread. | ||
""" | ||
asyncio.set_event_loop(loop) | ||
self._loop.run_until_complete(self.await_shutdown()) | ||
|
||
async def await_shutdown(self): | ||
""" | ||
Primary coroutine running on the engine event loop. This coroutine is responsible for | ||
keeping the engine alive until a shutdown is requested. | ||
""" | ||
# first await the shutdown signal | ||
while self._shutdown_event.is_set() is False: | ||
await asyncio.sleep(5) | ||
|
||
# Wait for the ongoing_requests | ||
while self.ongoing_request_count > 0: | ||
self.logger.log_info( | ||
"Awaiting remaining {} requests".format(self.ongoing_request_count) | ||
) | ||
await asyncio.sleep(5) | ||
|
||
for task in asyncio.all_tasks(loop=self._loop): | ||
if task is not asyncio.current_task(): | ||
task.cancel() | ||
|
||
self.logger.log_info("Shutdown complete") | ||
|
||
def get_sampling_params_dict(self, params_json): | ||
""" | ||
This functions parses the dictionary values into their | ||
expected format. | ||
""" | ||
|
||
params_dict = json.loads(params_json) | ||
|
||
# Special parsing for the supported sampling parameters | ||
bool_keys = ["ignore_eos", "skip_special_tokens", "use_beam_search"] | ||
for k in bool_keys: | ||
if k in params_dict: | ||
params_dict[k] = bool(params_dict[k]) | ||
|
||
float_keys = [ | ||
"frequency_penalty", | ||
"length_penalty", | ||
"presence_penalty", | ||
"temperature", | ||
"top_p", | ||
] | ||
for k in float_keys: | ||
if k in params_dict: | ||
params_dict[k] = float(params_dict[k]) | ||
|
||
int_keys = ["best_of", "max_tokens", "n", "top_k"] | ||
for k in int_keys: | ||
if k in params_dict: | ||
params_dict[k] = int(params_dict[k]) | ||
|
||
return params_dict | ||
|
||
def create_response(self, vllm_output): | ||
""" | ||
Parses the output from the vLLM engine into Triton | ||
response. | ||
""" | ||
prompt = vllm_output.prompt | ||
text_outputs = [ | ||
(prompt + output.text).encode("utf-8") for output in vllm_output.outputs | ||
] | ||
triton_output_tensor = pb_utils.Tensor( | ||
"text_output", np.asarray(text_outputs, dtype=self.output_dtype) | ||
) | ||
return pb_utils.InferenceResponse(output_tensors=[triton_output_tensor]) | ||
|
||
async def generate(self, request): | ||
""" | ||
Forwards single request to LLM engine and returns responses. | ||
""" | ||
response_sender = request.get_response_sender() | ||
self.ongoing_request_count += 1 | ||
try: | ||
request_id = random_uuid() | ||
prompt = pb_utils.get_input_tensor_by_name( | ||
request, "text_input" | ||
).as_numpy()[0] | ||
if isinstance(prompt, bytes): | ||
prompt = prompt.decode("utf-8") | ||
stream = pb_utils.get_input_tensor_by_name(request, "stream") | ||
if stream: | ||
stream = stream.as_numpy()[0] | ||
else: | ||
stream = False | ||
|
||
# Request parameters are not yet supported via | ||
# BLS. Provide an optional mechanism to receive serialized | ||
# parameters as an input tensor until support is added | ||
|
||
parameters_input_tensor = pb_utils.get_input_tensor_by_name( | ||
request, "sampling_parameters" | ||
) | ||
if parameters_input_tensor: | ||
parameters = parameters_input_tensor.as_numpy()[0].decode("utf-8") | ||
else: | ||
parameters = request.parameters() | ||
|
||
sampling_params_dict = self.get_sampling_params_dict(parameters) | ||
sampling_params = SamplingParams(**sampling_params_dict) | ||
|
||
last_output = None | ||
async for output in self.llm_engine.generate( | ||
prompt, sampling_params, request_id | ||
): | ||
if response_sender.is_cancelled(): | ||
await self.llm_engine.abort(request_id) | ||
break | ||
if stream: | ||
response_sender.send(self.create_response(output)) | ||
else: | ||
last_output = output | ||
|
||
if not stream: | ||
response_sender.send(self.create_response(last_output)) | ||
|
||
except Exception as e: | ||
self.logger.log_info(f"Error generating stream: {e}") | ||
error = pb_utils.TritonError(f"Error generating stream: {e}") | ||
triton_output_tensor = pb_utils.Tensor( | ||
"text_output", np.asarray(["N/A"], dtype=self.output_dtype) | ||
) | ||
response = pb_utils.InferenceResponse( | ||
output_tensors=[triton_output_tensor], error=error | ||
) | ||
response_sender.send(response) | ||
raise e | ||
finally: | ||
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL) | ||
self.ongoing_request_count -= 1 | ||
|
||
def execute(self, requests): | ||
""" | ||
Triton core issues requests to the backend via this method. | ||
When this method returns, new requests can be issued to the backend. Blocking | ||
this function would prevent the backend from pulling additional requests from | ||
Triton into the vLLM engine. This can be done if the kv cache within vLLM engine | ||
is too loaded. | ||
We are pushing all the requests on vllm and let it handle the full traffic. | ||
""" | ||
self.logger.log_info(f"=========== Receiving {len(requests)} requests ===========") | ||
for request in requests: | ||
self.create_task(self.generate(request)) | ||
return None | ||
|
||
def finalize(self): | ||
""" | ||
Triton virtual method; called when the model is unloaded. | ||
""" | ||
self.logger.log_info("Issuing finalize to vllm backend") | ||
self._shutdown_event.set() | ||
if self._loop_thread is not None: | ||
self._loop_thread.join() | ||
self._loop_thread = None |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters