Skip to content

Unsupervised Image Deraining: Optimization Model Driven Deep CNN

Notifications You must be signed in to change notification settings

ChangfengYu-Hust/UDGNet

Repository files navigation

UDGNet

Unsupervised Image Deraining: Optimization Model Driven Deep CNN Paper

By Changfeng Yu*, Yi Chang* (https://scholar.google.com/citations?user=I1nZ67YAAAAJ&hl=en)(* indicates equal contribution)

Demo

Demo

Dependencies and Installation

Dataset

  • Our dataset RealRain(including the angle) and Rain_cityscape can be downloaded here.
  • Make your own data:
    1. Simulating by yourself, the angle information can be easily obtained during the simulation.
    2. Other sythetic datasets or real image dataset, you need to label the angle informations by ./lib/angle_label.py
  • the dataset should have the following structure:
     -train
     -rain/data
     -angle/data
     -clean/data
     -test
     -rain/data
     -angle/data
  • the training data based cityscape can be downlowed form Baidu Netdisk the extraction code is hust

How to Train

  • UDGNet
    1. Run command:
     python train_Decomposition_angle.py --rain_path ./dataset/test/rain --angle_path ./data/test/angle --clean_path ./data/test/rain --reset 1

How to Test

  • UDGNet
    1. Run command:
     python Test_Decomposition_angle.py --rain_path ./dataset/test/rain --angle_path ./data/test/angle --clean_path ./data/test/rain --weight_path ./output/real_model/generator_backup.pth

UDGNet

About

Unsupervised Image Deraining: Optimization Model Driven Deep CNN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages